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EXECUTIVE SUMMARY 

Deliverable D3.4 presents the final outcomes of the CONDUCTOR project’s Work Package 3, which 
is dedicated to the harmonisation, fusion, optimisation, detection, and balancing approaches 
supporting next-generation traffic and fleet management systems. Building upon the foundations laid 
in deliverables D3.1, D3.2 and D3.3, this report consolidates the results of technical developments, 
validation activities, and cross-pilot integration, reflecting the maturation of several key components 
within the overall system architecture. 

At the heart of this work is the development of modular, interoperable services designed to ingest, 
fuse, and analyse multimodal traffic and transport data in real time. These services incorporate 
advanced data-driven techniques such as machine learning, statistical modelling, and ensemble 
methods to enable responsive detection of deviations and support the dynamic optimisation of traffic 
flows and fleet operations. This deliverable presents progress beyond the state of the art in several 
areas, including the operational deployment of ensemble-based anomaly detection, integration of 
contextual scoring and recovery estimation models, and flexible fusion pipelines capable of adapting 
to heterogeneous data sources. These contributions collectively enhance the system’s 
responsiveness to real-world traffic conditions and its ability to support coordinated decision-making 
across diverse mobility scenarios. 

The results reported herein span all three CONDUCTOR use cases, with implementation and 
validation activities carried out in simulation and pilot contexts. These include multi-source data 
harmonisation for route-level optimisation, detection of anomalies in corridor traffic, estimation of 
recovery durations following disruptions, and demand balancing strategies applied in both passenger 
and logistics settings. Particular attention was given to ensuring technical readiness and alignment 
with the overarching system requirements defined in other work packages. The deliverable also 
reflects on key lessons learned throughout the development and deployment phases, including the 
challenges of cross-border data availability and the importance of integrating external factors such 
as weather and planned events. Where limitations were encountered—such as data gaps in specific 
parts of the corridor—preliminary mitigation strategies were explored, including model-based 
inference and proxy estimation. 

Overall, D3.4 represents a significant step forward in the transition from experimental prototypes to 
operational services. The components presented are ready to be integrated and tested in the 
upcoming pilot demonstrations, forming a critical part of CONDUCTOR’s vision for intelligent, 
flexible, and coordinated mobility management across European transport networks. 

Keywords: Traffic Management, Fleet Optimization, Data Fusion, Anomaly Detection, Machine 
Learning, Real-Time Monitoring, CCAM, Pilot Integration, Recovery Estimation, Use Case 
Validation, System Readiness. 
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OBJECTIVES 

Deliverable D3.4 represents the final technical output of Work Package 3 (WP3) within the 

CONDUCTOR project. It documents the complete implementation of the harmonization, fusion, 

optimization, detection, and balancing approaches developed over the course of the project. This 

deliverable builds upon and finalizes the preliminary versions presented in D3.1 (Specification and 

initial version of data gathering, harmonization, fusion and analysis techniques), D3.2 (Specification 

and initial version of optimization and balancing algorithms), and D3.3 (Intermediate implementation 

of WP3 components). It incorporates refinements and enhancements derived from technical 

feedback loops, particularly those stemming from testing and validation activities in WP5. 

The work reported herein is directly linked to five core technical tasks under WP3: 

• Task 3.1 – Data Gathering and Harmonization: Final integration of structured and 
unstructured datasets from diverse pilot contexts, addressing completeness, quality, and 
compatibility for downstream use. 

• Task 3.2 – Data Fusion and Analysis: Implementation of fusion strategies combining 
multimodal inputs to enrich decision-making, including statistical pre-processing and data 
abstraction methods. 

• Task 3.3 – Network Load Balancing: Realization of rule-based and data-driven balancing 
strategies for traffic and fleet distribution, leveraging insights from real-time and historical 
data flows. 

• Task 3.4 – Dynamic Optimization: Finalization of optimization routines capable of adjusting 
routes, resources, and service levels dynamically in response to operational conditions. 

• Task 3.5 – Anomaly Detection: Completion of detection mechanisms designed to identify 
and contextualize disruptions across traffic networks, including model calibration and 
performance evaluation. 

In alignment with the overall objectives of WP3, this deliverable addresses the following goals as 

outlined in the Grant Agreement’s Description of Action (DoA): 

• Objective 3.1: Selection and implementation of techniques for data gathering, 
harmonization, fusion, and analysis. 

• Objective 3.2: Development of dynamic optimization and network load-balancing 
methodologies. 

• Objective 3.3: Integration of robust anomaly detection routines. 

These objectives contribute directly to the overarching ambition of the CONDUCTOR project, which 

is to develop advanced traffic and fleet management systems capable of supporting Cooperative, 

Connected, and Automated Mobility (CCAM). In particular, WP3 serves as the data and algorithmic 

backbone of the CONDUCTOR architecture, enabling the project’s decision support tools to operate 

effectively under both mixed and fully autonomous transport conditions. The deliverable also 

reinforces CONDUCTOR’s commitment to scalability and adaptability, ensuring that the developed 

components are modular, interoperable, and validated across a variety of pilot settings. By 

consolidating all core WP3 functionalities into their final form, D3.4 sets the foundation for their 

integration into the large-scale demonstrations planned under WP6 and WP7.  
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1. DATA GATHERING & HARMONIZATION 

1.1 Data Harmonization 

In CONDUCTOR we are using data from various sources. Moreover, the project is being done by 

different teams from all over Europe using different systems, thus we are dealing with the data that 

varies in structure, format and meaning. To ensure a smoother handling and sharing of various 

data we adopted Data Harmonisation proces. This allows us to make the data more consistent, 

enables seamless integration of applications or components and enable efficient investigation of 

CCAM services. 

In D3.1 we presented the selected data models as the basis for data harmonisation. We selected 

the FIWARE’s smart data models based on suitability and alignment with the project’s goals. The 

following smart data models were selected for harmonization: 

• ItemFlowObserved: This data model can effectively capture readings obtained from 

infrastructure sensors such as loop detectors. These readings encompass various traffic 

engineering parameters, including average speed, flow, occupancy, and others.  

• WeatherObserved: This data model represents observations of weather conditions at 

specific locations and times. 

The following data sources were selected for the harmonization demonstration: 

1. Attica Trafic Data 

2. DARS Traffic Data 

3. Weatherapi Weather Data 

4. DARS Traffic Events Data 

The harmonization mapping for first three data sources was described in D3.1. For the duration of 

the project only one additional data source was added and mapped, DARS Traffic Events Data 

1.2 CONDUCTOR Dataspace 

This section outlines the final specifications and implementation details of the Dataspace. It includes 

a short overview of the initial version (D3.1) and provides detailed information on the deployment 

and configuration of IDSA-compliant connectors, integration with a comprehensive dataset 

management system, and the extension of the Dataspace into a scalable and reliable big data 

processing platform.  

In Deliverable D3.1, a Dataspace architecture was proposed as a comprehensive solution for 

managing the project's models and solutions. This architecture ensures data sovereignty, control, 

interoperability, and trustworthiness. To achieve this, tools from the Fiware ecosystem were 

leveraged, including a pub/sub framework. Additionally, International Data Spaces Association 

(IDSA) connectors were identified as a key component to facilitate secure and effective 

communication and data exchange within the Dataspace. 

In this section we focus on the directions the conductor data exchange space has evolved, and more 

specifically:  

- In section 1.2.1, we describe the implementation, deployment and configuration of Eclipse 

Dataspace Connectors, together with an example of data exchange between two dataspace 

participants.  
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- In section 1.2.2 we describe the integration of a comprehensive dataset management system 

to the dataspace.  

- In section 1.2.3 we describe the extension of the dataspace for a containerized, scalable and 

resilient big data processing platform 

1.2.1 Eclipse Data Space Connector (EDSC) deployment and configuration 

In the CONDUCTOR dataspace, no single entity has control over all data, instead each 

stakeholder controls how they share their own data. Apart from the decentralized components, 

some centralised components like an Identity Service and a Catalog Service are deployed and can 

be connected to the Orion Message Broker. An overview of the updated Architecture can be found 

in Figure 1. 

 

Figure 1: Updated Architecture of Dataspace 

The implementation we follow is using the EDSC1, adhering to the standards set by the IDSA and 

ensuring: 

• Interoperability: for seamless integration across different stakeholders. 

• Security: to protect sensitive data during exchanges. 

The main components that we established in the dataspace are the following:  

• Control Plane: responsible for assembling catalogues, launching contract agreements to 

provide grant access to data, managing data transfers, and monitoring usage compliance. 

• Data Plane: responsible for transmitting data using a wire protocol following the requests 

by the control plane. 

• Identity Hub: manages organization identity resources such as credentials for all 

dataspace participants. 

 

 

 

1 https://github.com/eclipse-edc 
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• Federated Catalogue: aggregated catalogues of multiple participants in a dataspace 

(crawler-based) 

In general, the overall process for data exchange using the Eclipse Data Space Components is 

executed in two phases:  

• Contract offering 

• Contract negotiation  

The steps that comprise the process, in the general scenario, are the following:  

• Define Asset Data: Specify the dataset to be provided and set the data to be 

offered. 

• Create Asset: Generate metadata related to the dataset, including the data 

address and additional information. 

• Create Policy: Develop a Data Access Rule in ODRL format, outlining the terms 

under which the data is provided. 

• Configure Contract: Link the Asset to the Policy to create a Contract Definition. 

• Query Contract Offers: Data Consumer initiates a request to retrieve the offers 

catalogue from the provider. 

• Request Metadata: The Consumer fetches additional metadata on a specific 

offer. 

• Accept Contract: The Consumer accepts the contract and initiates negotiations. 

• Negotiate and Finalize Contract: Both the Provider and Consumer agree to the 

contract terms. 

• Initiate Data Transfer: The Consumer requests the start of the data transfer 

process. 

• Perform Data Transfer: Execute the data transfer as agreed upon in the contract. 

1.2.2 Dataset Management Integration 

In the context of data space, a comprehensive data management system can help facilitate the 

availability and management of data essential for CONDUCTOR services. A Comprehensive 

Knowledge Archive Network (CKAN)-based system (e.g. Figure 2) can provide extensive data 

management capabilities for the collection, distribution, and utilisation of mobility data and other 

datasets, such as air pollution data by the different actors. CKAN is also compatible with data 

security, privacy, governance, and sovereignty requirements during the management of open, 

shared, and closed data types.  
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Figure 2: CKAN example GUI 



  

CO (confidential – consortium only) | 1.0 | Final version   Page 17 | 130 

Some features provided by CKAN can strongly support the Use Cases of CONDUCTOR regarding 

data management, as well as the integration to the dataspace components:  

• API: CKAN provides full API access to all functionalities, enabling external applications and 

scripts to easily integrate. The API allows integration with dataspace components such as 

the connectors or the pub/sub system, while also allowing dataspace participants can write 

custom apps and automation on top of the data management platform. 

• Datastore:  A CKAN extension provides a database for storing structured data from files. 

When dataset files (e.g. CSV or Excel) are added to CKAN, their contents are extracted and 

loaded into a database, making the data query able in real time.  

• Metadata: Each dataset can be thoroughly described for discovery and management, with 

custom metadata attributes that might include location coordinates, data quality rating, or 

others.  

• Search:  CKAN's search functionality enables users to quickly find the data they need, even 

in a large catalogue. Since all metadata is indexed, this provides a high-usability experience 

for users and, with API integration, allows external applications to leverage the search 

capabilities.  

• Visualization: CKAN includes built-in visualization tools, for data validation and for 

exploration.  

• Federate: CKAN can participate in federated networks of data portals, effectively allowing 

multiple catalogues to share and synchronize data. CKAN also supports the DCAT standard 

for data catalogue metadata, which means it can exchange information with other compatible 

systems. 

1.2.3 Containerized Big Data architecture   

For all data space components, including data processing, a container-based infrastructure is 

preferred. Containerized applications offer flexibility and efficient resource management, facilitating 

deployment and scaling for data exchange and processing within the project. Containers 

encapsulate applications and their dependencies, enabling seamless deployment across diverse 

environments. 

For big data processing, Kubernetes was chosen for container orchestration, as detailed in 

deliverable D3.1 (Specification and initial version of data gathering, harmonisation, fusion and 

analysis techniques). The rest of the components have also been deployed using containers, but 

without a dedicated orchestration framework to avoid unnecessary overhead. Eclipse Dataspace 

components have been deployed and configured as Docker containers, allowing for the custom 

deployment of multiple services across separate and diverse server environments. Additionally, the 

CKAN-based data management platform has been deployed as a Docker container on a Virtual 

Private Server in the European Union. 
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2. DATA FUSION & ANALYSIS 

This section describes the data fusion algorithms required for developing the CONDUCTOR decision 

support models and tools. These algorithms aim to transform harmonised data, collected from 

various sources, into medium- and high-level features for their use in decision-making models. An 

initial version of the algorithms was presented in deliverable D3.1. This document presents the final 

versions which are being used in the CONDUCTOR use cases. 

2.1 Concept and Approach 

The fusion of diverse mobility-related data (e.g., GPS, mobile records, surveys) enables the 

reconstruction of traffic and mobility patterns, which are essential for the development of effective 

traffic and fleet management strategies. Each data source contributes complementary information, 

enriching the overall understanding of mobility patterns. Moreover, different data source 

combinations can yield similar mobility indicators, demonstrating the method’s flexibility. This 

approach enhances the understanding of mobility patterns and supports the optimization of transport 

systems. 

Within the CONDUCTOR project, seven data fusion developments were identified by Nommon, 

INTRA, NTUA, TUM, and JSI to support the design of new traffic and fleet management strategies: 

• Characterisation of delivery trips and estimation of delivery demand from mobile network, 

surveys and logistics operation data. 

• Shared mobility demand estimation. 

• Enrichment of users’ profile. 

• Household size assignment. 

• Identification of unusual traffic patterns caused by large-scale events. 

• Coupled Aimsun-FleetPy simulation data. 

• Space-time context and heterogeneous data fusion. 
Each development is framed within one of the CONDUCTOR UCs. Nevertheless, a from-particular-

to-general approach was followed during the definition and implementation phases, ensuring that 

the methodologies can be extrapolated to other contexts, provided that similar data sources are 

available. 

2.2 Characterisation of last-mile delivery trips and estimation of last-
mile delivery demand from mobile network, surveys, and logistic 

operation data 

The objective of this algorithm is the estimation of last-mile delivery demand volume and the 

characterisation of last-mile delivery trips to generate the last-mile delivery demand requests to be 

used in the Urban logistics UC of the project. The algorithm is implemented in two phases of 

incremental detail:  

• phase 1: estimation of the last-mile delivery demand from surveys. In this phase, the delivery 

demand data provided by the Spanish National Statistics Institute aggregated at Spanish 

province level is disaggregated into smaller administrative levels, such as district or census 

tract, based on the population sociodemographic characteristics. This methodology was 

applied to obtain the last-mile delivery demand of an average month of the year 2023 in each 

district of Madrid for different population groups (see deliverable D3.1, Section 4.2.1). 

• phase 2: characterization of delivery trips. In this phase, a dataset of historical demand data 

of one logistic operator of Madrid is used to characterize last-mile delivery trips. 
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Next, the methodology defined, and results obtained are described. 

2.2.1 Data used 

For this development, the following data were used: 

• Last-mile delivery trips data. These data are provided by CITYlogin, a last-mile delivery 

logistic company located in Madrid, that has shared their delivery data, previously 

anonymised, with Nommon under private agreement for the context of this project. The 

data provided include information of goods travel demand, including delivery stops and 

delivery itineraries for one month (2242 routes in total). Specifically, for each stop the 

following information is provided:  

o the date of the delivery, 

o the vehicle ID (this information is only available when the parcel is delivered), 

o the sequence number of the delivery within the route of the day (this information is 

only available when the parcel is delivered), 

o the address of the delivery, 

o the coordinates of the delivery (latitude, longitude), 

o the estimated time of delivery (ETA) (this information is only available when the 

parcel is delivered), 

o information about the number, size, and weight of the products delivered. 

• Open-Source Routing Machine (OSRM) data. OSRM is an open-source routing engine 

that provides routing planning from a set of coordinates and network information. These 

data were used to reconstruct the last-mile delivery trajectories based on the delivery 

coordinates. 

• Mobile Network Data (MND). These data are provided by one of the largest telecom 

companies in Spain and contains mobile phone Call Detail Records (CDRs) and probes 

data at antenna level of the company’s users, sociodemographic information (age, gender, 

nationality), and the antenna network.  

• Points of interest (POIs). This dataset was generated by Nommon and contains the 

location of logistic and delivery hubs in the Madrid Region.  

2.2.2 Methodology 

The methodology consists of the following steps: 

1. Trips preprocessing. The route, sequence, and ETA information only appear when the 

parcel is delivered. So, some routes have inconsecutive delivery sequences (e.g., 1, 2, 5, 7, 

9, 10, 11, 12). The missing numbers of the sequence correspond to parcels that were not 

delivered, and in consequence, were not registered. This missing information causes the 

route to have gaps. To characterise these trips, the complete route is needed (since, even 

though the parcel is not delivered, the route is travelled), hence, the trips are filtered based 

on the number of missing deliveries they have in the sequence according to the following 

criteria: 

i. Filter routes with low percentage of parcels delivered. For that, the number of parcels 

in the route is assumed to be the highest sequence number. 
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ii. Reconstruction of routes. For those remaining routes with gaps, if the distance 

between the last deliver before the gap and the first deliver after it is less than 300 

metres, and there are no more than 2 consecutive missing parcels, the route is 

reconstructed by interpolating to midpoints (considering straight line) and mean times. 

The routes with gaps that do not meet this condition are removed. 

iii. Filter very short or very large routes, in terms of both trip duration and number of 

deliveries. 

2. Trips feature identification. Next, features characterising a typical logistic trip are identified 

and computed for the data pre-processed in the previous step. These features include, 

among others, travel time and distance related metrics, frequency of appearance in logistic 

centre, and radius of gyration. 

3. Pattern extraction and characterisation. Using the features computed in the previous step, 

the mobility patterns are extracted using unsupervised ML techniques. Specifically, the k-

means clustering classification algorithm is used. To obtain the optimal number of clusters, 

the algorithm is run for different values of k (i.e., number of clusters), and for each of the 

results the inertia score is computed to measure the quality of the clusters. To find the optimal 

value of k, the elbow method was used, which involves plotting the inertia score against the 

number of clusters, for all the values of k. As k increases, the inertia decreases, but after a 

certain point, the rate of decrease slows down, forming an 'elbow' in the curve. This elbow 

represents the optimal number of clusters, balancing model complexity and clustering quality. 

Once the clusters are obtained, the patterns obtained are characterised based on the 

features distribution.  

4. Projection of last-mile delivery GPS traces to the MND antenna network. Once an initial 

pattern characterisation is achieved, the delivery trips are projected to the MND antenna 

network. For that, the MND antenna network is used to tile the region into the coverage areas 

of each antenna, using a Voronoi tessellation. The zones or polygons obtained with this 

tessellation are called Voronoi polygons or simply Voronois. This way, the trajectories are 

translated into Voronoi delivery trajectories, with the same spatial resolution as the event 

data provided by the MND, making both data sources comparable. 

This process is done in three steps. First, OSRM is used to generate traces that join the GPS 

coordinates into the network. This trace is then projected to the Voronoi tessellation. Finally, 

each delivery point is mapped to the Voronoi polygon that contains it, and the trajectory is 

translated in terms of Voronoi polygons instead of GPS coordinates. 

5. Trip feature identification. Using the routes projected in previous step at a Voronoi level, a 

new set of features characterising typical logistic trips, more appropriate for this spatial 

resolution, are identified and computed. 

6. Pattern extraction and characterisation at Voronoi level. Using the features computed in 

the previous step at Voronoi polygon level, the mobility patterns are extracted using 

unsupervised ML techniques. Specifically, the k-means clustering classification algorithm is 

used. To obtain the optimal number of clusters, the elbow method is applied again. Once the 

clusters are obtained, the patterns obtained are characterised based on the features 

distribution.  

2.2.3 Results 

Next, the results of the algorithm for the characterisation of last-mile delivery trips are described, 

grouped into the same sequential steps of the development. 

1. Trips preprocessing.  
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i. Figure 3 shows the delivery percentage distribution of all the routes of the dataset, in 

which the percentage bins are shown in steps of 0.05. Based on this figure, only 

routes with at least 95% of the deliveries performed are kept. After this filter, 1199 

trips remained (out of 2242, 53.50%). 

ii. After the reconstruction criterion, 1176 trips remained.  

iii. Figure 4 shows the distribution of the deliveries in terms of the number of deliveries 

and duration. Based on this information, those routes lasting less than 4 hours or 

more than 12, and with less than 30 parcels delivered are removed. After this filtering, 

206 trips remained (9.2% of the total routes). 

 

Figure 3: Delivery percentage distribution 

 

Figure 4: Distribution of the deliveries in terms of the number of deliveries and duration 

2. Trips feature identification. The features considered are: 

• ratio of radius of gyration and travelled distance,  

• ratio of inter-delivery average distance and maximum inter-delivery distance,  

• ratio of length of the maximum sequence of deliveries of less than 1 km and the total 

number of deliveries,  

• ratio of length of the maximum sequence of deliveries of less than 15 minutes and the 

total number of deliveries,  
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• maximum number of deliveries in 1 hour,  

• number of delivery sequences of less than 1 km,  

• number of delivery sequences of less than 15 min.  

3. Pattern extraction and characterisation. Figure 5 shows the inertia score obtained for 

different values of k. As can be seen, there is an elbow at 3. This is the number of clusters 

selected. Figure 6 depicts the three patterns obtained (cluster 1 in light blue, cluster 2 in dark 

blue, and cluster 3 in red). These patterns can be characterised as:  

• Pattern 1 (light blue): urban delivery trips with small radius of gyration and short delivery 

times and distances. 

• Pattern 2 (dark blue): longer urban delivery trips, with greater inter-delivery distances and 

larger radius of gyration. 

• Pattern 3 (red): interurban delivery trips between different municipalities, with large 

delivery times and distances. 

 

Figure 5: Inertia score for different number of clusters 

 

Figure 6: Examples of trajectories of each cluster 
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4. Projection of last-mile delivery GPS traces to the MND antenna network. Next, delivery 

trips are projected to the Voronoi tessellation. Figure 7 illustrates this process. In the right-

hand side plot, the Voronoi polygon trajectory is generated using the centroids of the Voronoi 

polygons intersected with the route. 

 

Figure 7: Projection of the last-mile delivery GPS traces to the MND antenna network 

5. Trips feature identification. In this case, the features considered are: 

• radius of gyration of the route (in km), 

• travel distance (in km),  

• ratio between the radius of gyration and the travel distance,  

• average time in each Voronoi polygon visited during the route,  

• ratio between the number of unique Voronoi polygon visited and the total length of 

Voronoi polygons of the trip (to find loops),  

• ratio between the number of Voronoi polygons with multiple registers and the total number 

of Voronoi polygons visited,  

• time spent in the Voronoi polygons with multiple registers and the total travel time, and  

• ratio between the total travel time and the Q25, Q50, Q75, Q90 and maximum times in 

the Voronoi polygon. 

6. Pattern extraction and characterisation at a Voronoi level. Figure 8 shows the inertia 

score obtained for different values of k. As can be seen, there is an elbow at 5. This is the 

number of clusters selected. Figure 9 shows the distribution of the features within each 

pattern. Based on these distributions, the patterns can be characterised as:  

• Pattern 0: Short interurban trips with many stops, small distance between Voronoi 

polygons of consecutive stops and medium radius of gyration. 

• Pattern 1: Long interurban trips with few stops (short Voronoi polygons sequence), big 

distance between Voronoi polygons of consecutive stops, and large radius of gyration. 

• Pattern 2: Short urban trips with many stops, very small radius of gyration, and distance 

between Voronoi polygons of consecutive stops (almost all adjacent). 

• Pattern 3: Long urban trips with less stops, small radius of gyration and very short time in 

the Voronoi polygon. 

• Pattern 4: Long logistic trips outside the Madrid region. Very big distance between 

Voronoi polygons of consecutive stops and very large radius of gyration. 
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Figure 8: Inertia score for different number of clusters 
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Figure 9: Distribution of the trip features in each of the five patterns obtained 
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2.3 Shared mobility demand estimation 

The objective of this algorithm is the characterisation and estimation of future urban passenger 

transport demand for CCAM-enabled DRT services, as well as the estimation of the modes that will 

be substituted by CCAM. This will be used in the UC1-Madrid and UC3 of the project. The estimation 

of the shared mobility demand is structured into 2 main steps: 

1. CCAM-DRT demand generation under different future scenarios. 

2. Mode substitution model, to characterise the trips that are likely to shift to CCAM-DRT 

services. 

2.3.1 Data used 

The data sources used for this development are: 

• Spain census data. This data source contains information from the Spanish National 

Statistical Office (INE), which provides demographic information for Spain at a high level of 

detail. The sample size is around 4.2 million people (10% of Spanish total population). In 

particular, the data considered to be useful is the Spanish Census, where population data, 

characterised by age group and gender is available at census tract level. 

• Land use data (SIOSE - HILUCS classification). National land use polygons classified 

using the INSPIRE HILUCS system, adapted for Spain and linked to the SIOSE database. 

• Sociodemographic data (Comunidad de Madrid) from the INE. It provides 

sociodemographic indicators at the level of small administrative zones across the Madrid 

region. It includes metrics such as income inequality (P80/P20 ratio), average and salary 

income, population size and age structure, household composition, and the Gini index of 

each zone. 

• Carsharing demand data of Madrid, from FLUCTUO, a shared mobility data aggregator. 

This dataset contains detailed records of carsharing trips in the carsharing operational areas 

of Madrid, used as a proxy for CCAM-enabled DRT demand, as carsharing services 

represent the most similar transport mode currently available in the city. The dataset spans 

a complete year, from June 2022 to May 2023 (both months included), and integrates 

information from all carsharing operators active in Madrid during that period. Each trip is 

included as an individual register in the dataset, with the trip start and end timestamps and 

geographical coordinates. 

• Mobility Household Survey (EMD, for its acronym in Spanish). The Mobility Household 

Survey is carried out by the Regional Transport Authority and analyses the Madrid residents’ 

daily trips on a working day. It is based on 85.000 personal and telephone interviews carried 

out between February and May, 2018. The dataset includes the transport mode used for 

each trip, with over 300 trips recorded in taxi and ride-hailing services. 

• OD matrices with transport mode from Mobile Network Data (MND). Origin-Destination 

matrices based on district-level zones in Madrid (INE zoning), derived from mobile phone 

data provided by one of Spain’s largest telecom companies. The dataset includes Call Detail 

Records (CDRs), probe data at the antenna level, the company’s antenna network, and 

sociodemographic information (age, gender, nationality), which is incorporated —in an 

aggregated manner— in the output OD matrices. 
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2.3.2 Methodology 

A flowchart illustrating the general methodology is presented in Figure 10. As previously mentioned, 

the approach consists of two main steps: (i) the generation of CCAM-DRT demand under different 

future scenarios, and (ii) the development and application of a mode substitution model. 

 

Figure 10: Shared mobility demand estimation methodology flowchart 

1. CCAM-DRT demand generation under different future scenarios 

In this stage, shared mobility trips—represented by the FLUCTUO dataset—are used as the main 

input, serving as a proxy to estimate the future demand for CCAM-DRT services. Since the observed 

demand from current shared mobility services is relatively low, these data are aggregated temporally 

(data from different days are grouped) so they can be analysed to train a demand generation model 

that learns the temporal and spatial patterns of usage. Specifically, the probability of trips occurring 

at each hour and from/to each geographical area is computed. These probabilities are then used to 

simulate the demand for an average day. 

To define the total demand for this average day, a target number of trips must be set. For this 

purpose, a set of penetration scenarios—derived from the research conducted in the MOMENTUM 

project—is defined. These scenarios reflect different levels of expected future adoption of CCAM-

DRT services. 
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The output of this stage is a set of synthetic trips—structured similarly to the input carsharing data—

restricted to a defined study area, generated for a single representative day, and scaled to match 

the target daily demand corresponding to each penetration scenario. 

2. Mode substitution model 

To assess the modal impact of CCAM services—not only in terms of the number of trips generated 

but also in understanding which transport modes are likely to be replaced, and which types of 

travellers and trips are more likely to adopt these services—a mode substitution model is applied at 

this stage. 

The model estimates the probability of each synthetic CCAM-DRT trip replacing a trip from another 

mode, based on behavioural insights drawn from the Mobility Household Survey for taxi and ride-

hailing trips (user profile) and from the actual CCAM-DRT matrices produced by stage 1 of this 

algorithm (trip profile). Factors such as age, gender, distance and time of day are considered.  

For each CCAM trip, an equivalent trip from the MND OD Matrix is selected based on the user and 

trip profile as previously mentioned. Since MND OD Matrix trips already have a current transport 

mode (private vehicle, public transport or walk), this way we can obtain the “mode of origin” of trips 

that shifted to CCAM-DRT services.  

The output consists of a MND OD Matrix (containing origin mode, user and trip profile variables for 

each trip) enriched with an additional column that indicates which of the trips in the matrix shift to 

CCAM-DRT services under the specified penetration scenario. 

2.3.3 Results 

Next, the results obtained for the application of the shared mobility demand estimation algorithms 

are shown. The results are structured into 2 sections, showing the results of the corresponding main 

stage of the algorithm: 

1. CCAM-DRT demand generation under different future scenarios 

The estimated penetration rates for future scenarios, based on the MOMENTUM project deliverable 

D2.1 New Mobility Options and Urban Mobility: Challenges and Opportunities for Transport 

Planning and Modelling, are described in Table 1. 

Table 1: Estimated penetration rates for future CCAM DRT demand 

  Scenario 1 Scenario 2 Scenario 3 

Penetration rate 2% (82269 trips) 12% (493610 trips) 22% (904952 trips) 

Based on these penetration rates and the FLUCTUO dataset, the demand generation model helps 

characterize the key features that impact the adoption of this transport service. The demand 

generation model is a supervised ML regression model, specifically a Gradient Boosting Regressor. 

It estimates the number of trips per transport zone and hourly interval, using a rich set of explanatory 

features derived from census data, land use, and sociodemographic indicators. The output of the 

model is then disaggregated into individual trips by drawing from the observed spatial-temporal 

distributions in the FLUCTUO dataset.  
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As seen in Table 2, the model achieved solid performance results, with an R² of 0.759, MAE of 412, 

and RMSE of 489241, showing its ability to capture a significant proportion of the variability in the 

observed data. Figure 11 presents a scatter plot comparing the actual trips (from FLUCTUO) with 

the estimated trips, including the identity line. The figure shows a good alignment between predicted 

and observed values for most of the range, although a few outliers appear in high-demand zones, 

where trips are generally underestimated. This deviation may be expected given the skewness of 

shared mobility usage across the city and the few zones that have such high trip volumes. 

Table 2: Accuracy metrics of DRT demand estimation regression model 

  R² MAE RSME 

Penetration rate 0.7589 412.04 489,240.80 

 

Figure 11: Scatter plot comparing the actual FLUCTUO trips with the trips estimated by the ML model 

In terms of feature relevance, the most important predictors were (see Figure 12): 

• "zone_lu_urban”: urban land use proportion within the zone). Ranked highly, suggesting 

demand is concentrated in denser, urbanized areas.  

• “zone_intersected_population”: population within the zone to predict. Contributing strongly to 

the model, indicating a link between local population density and shared mobility demand.  

• Other relevant features, including distance groups as well as different land-use areas and 

sociodemographic characteristics. 
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Figure 12: Feature importance of the ML trip estimator 

The origin points of the trips generated for Scenario 3 are shown in Figure 13, whereas Figure 14 

shows the trip distance distribution of the aforementioned trips. 

 

Figure 13: Visualisation of the origins of CCAM-DRT trips generated for Scenario 3 
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Figure 14: Trip distance distribution of the CCAM-DRT trips generated for Scenario 3  

2. Mode substitution model 

The mode substitution model builds upon a preliminary classification task aimed at estimating the 

likelihood that a given trip was made using CCAM-DRT, based on the socio-demographic and 

behavioural profile of the traveller and some trip characteristics (age, gender, residence municipality, 

trip distance) from the household travel survey. To address this, a Random Forest classification 

model was trained. This algorithm was selected due to its robustness, interpretability, and ability to 

handle complex, non-linear relationships between features.  

Given the significant class imbalance in the survey data—specifically, the low number of trips made 

by taxi or ride-hailing services (fewer than 400 out of the total number of recorded trips)—the model 

was configured to compensate for this imbalance by assigning higher weights to underrepresented 

classes. This ensures that the classifier does not disproportionately favour the more frequent modes 

of transport and can effectively learn patterns associated with minority classes. 

The model is not intended to assign a binary label to each trip, but rather to estimate the probability 

that a trip was made using CCAM-DRT. Thus, to evaluate its performance, we use the Receiver 

Operating Characteristic (ROC) curve, which illustrates the trade-off between true positive and false 

positive rates across different probability thresholds (there is no set probability threshold for this use 

case). The Area Under the Curve (AUC) serves as a summary metric of the model's discriminative 

ability. The following figure (Figure 15) shows the ROC curve, with an AUC of 0.79, indicating good 

predictive performance. 
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Figure 15: ROC Curve and AUC for the user profile classification model of the mode substitution 

model 

The importance of the different features used for the model is shown in Figure 16: 

 

Figure 16: Features of the mode substitution model classification algorithm, ranked by importance 

The mode substitution model results in an output that allows for the characterisation of the trips that 

will shift to CCAM-DRT services under future scenarios. The results indicate that the variables with 

the most influence in the adoption of these transport services from the ones that were analysed are 

trip distance, age and origin mode. The results shown below have been produced for Scenario 2 

(with 12% penetration rate), although results from all scenarios are analogous. 

In Figure 17, the age distribution of all trips in the original MND OD matrices is compared with the 

age distribution of the trips that were assigned to CCAM-DRT. As the user profile probabilities of this 

transport service were extracted from taxi and ride-hailing trips from the household transport survey, 

the results reflect the expected distribution: young travellers are less likely to choose this transport 
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mode, whereas the group with the most CCAM-DRT trips when compared to their total trips are 

people over 65 years old. 

 

Figure 17: Mode substitution model results: age distribution comparison for generated CCAM-DRT 

trips 

If we focus on trip distance, as expected, CCAM-DRT services are generally used for trips that are 

longer than the average trip (Figure 18). 

 

Figure 18: Mode substitution model results: distance distribution comparison for generated CCAM-

DRT trips 

Finally, the main result of the mode substitution model is the origin mode of the trips that would be 

substituted by CCAM-DRT (Figure 19). Compared to the total mode split (left), the mode split of the 

new CCAM-DRT trips (right) comprises a higher percentage of private vehicle and public transport, 

which adds up to almost 40% of the origin modes. 
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Figure 19: Mode substitution model results: origin mode quota for generated CCAM-DRT trips 

2.4 Enrichment of users’ profile 

The objective of this development is the estimation of car ownership and household size features 

from travellers’ mobility patterns. In particular, this development aims to enrich mobility-travel diaries 

obtained from MND, which are being used to estimate total demand and the potential impact of DRT-

CCAM services on the demand of existing modes Madrid’s Use Cases. Car ownership and 

household size are identified as relevant CCAM acceptance after a literature review (see Deliverable 

D1.1 Report on stakeholder requirements, user needs and social innovations). Hence, a better 

characterisation of the MND users’ profile will allow a better estimation of the potential DRT-CCAM 

demand. 

Next, the developments for the estimation of each feature are described. 

2.4.1 Car ownership assignment 

The objective of this development is to estimate whether a traveller owns a car or not. For that, 

machine learning (ML) techniques are used to fuse information from surveys and MND. 

The hypothesis behind this approach is that a user’s car ownership can be explained by their 

sociodemographic, economic features and mobility patterns, as well as those of individuals residing 

in the same area, and the transport services available in the area of residence.   

2.4.2 Data used 

The data sources used for this development are: 

• Spain census data (same data source as in Section 2.3.1).  

• Household income distribution. This data source contains information from the Spanish 

National Statistical Office (INE) about the average income of the residents per census tract 

level. 

• Public transport supply data. This data source contains the location of the metro, train, and 

city and intercity buses stops. This information is provided by the Madrid Regional Transport 

Consortium (CRTM).  

• EMD survey (same data source as in Section 2.3.1). 

• MND (same data source as in Section 2.2.1).  

• Circulating fleet data. Dataset that contains the total number of vehicles registered in each 

municipality of the Madrid region.  
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• Vehicle register of the City of Madrid. Dataset that contains all the vehicles registered in 

the City of Madrid at district and neighbourhood level. 

2.4.3 Methodology 

The basic idea of the implementation is to train a ML model on the EMD survey data and then apply 

it to predict car ownership of the MND users. For that, the most important part is the feature selection: 

the features used to train the model shall be available in both datasets, with the same spatial and 

temporal (if applicable) granularity. 

This approach assumes that both datasets are representative of the population of the Madrid region, 

and hence, the patterns learned by the model from one of them are transferable to the other. 

The methodology defined comprises the following steps: 

1. Features computation. The features selected include: 

• user features: features characterising the sociodemographic and economic profile and 

mobility patterns of a user, and 

• zone features: sociodemographic features, mobility patterns of the population that resides 

in the same zone as the user and available public transport services. 

2. Geographical disaggregation. To compute the features, it is very important to define an 

appropriate geographical resolution, in such a way that the zone features are informative and 

representative. 

3. Grouping of similar zones. Users have very different behaviours depending on their area 

of residence, and zones have really different features depending on their location as well. 

Also, the resident sample in the survey is very irregular among the different municipalities of 

Madrid (because of the population distribution in the region). To avoid a bias towards 

overrepresented zones in the survey, preventing the model to learn the patterns of less 

populated zones, the zones are grouped in clusters using an unsupervised ML algorithm, 

specifically, the k-means algorithm.  

4. Data preparation. To prepare the data for the ML analysis, the following steps are applied: 

• Zones selection: zones with small sample sizes are removed for training the model, as 

the patterns they can provide are most likely not representative of the user behaviour of 

the zone. Those zones with a sample less than 5 users per class in the survey were not 

considered for training. 

• Data split: as many regular ML developments, the dataset is split in two sets: training set 

and test set. The same split was applied for the three clusters, 80% for training and 15% 

for testing, stratifying the split by class and residence zone to ensure that both classes 

and all the zones are equally represented in both sets.  

5. Model selection and tuning. For each cluster, a classification machine learning algorithm 

is trained to classify the survey users according to two classes: 

• Class 1: car ownership = yes, and 

• Class 2: car ownership = no. 

To select the best model for each cluster, a two-step process is followed: 

1. Model selection: for each cluster, a performance comparison on the train set was 

conducted among Random Forest, Gradient Boosting, Adaptive Boosting, Stochastic 

Gradient Descent, and Multilayer Perceptron classifiers.  

2. Grid search: for the model selected in the previous step, a grid search was applied to 

determine the best values of some key parameters of the training process. This 

method considers all possible combination of the values provided for each parameter 

to train the model and provides the score for each combination. This allows the 
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selection of the parameters combination that yields the best score. The parameters 

included in the grid search are: 

a. Class balanced ratio: the number of users per class is imbalanced, and this 

may cause that the model, to improve the accuracy results, prioritises one 

class above the other. To prevent this, a balanced class ratio is applied to the 

training set in the three clusters. This ratio establishes the percentage of the 

users belonging to class 1 that are picked to train the model. 

b. Features selection: to identify the most relevant features, the Recursive 

Feature Elimination (RFE) technique is applied. RFE works by iteratively 

training the model, ranking feature importance, and eliminating the least 

significant features in each iteration until the optimal subset is found. This 

method helps reduce overfitting, improve generalization, and enhance 

computational efficiency by eliminating redundant or irrelevant variables.  

c. Dimensionality reduction: the Principal Component Analysis (PCA) technique 

is applied. This technique transforms high-dimensional data into a lower-

dimensional space while preserving as much variance as possible. This 

improves computational efficiency and enhances model performance by 

reducing the risk of overfitting. However, the transformed components may 

lack interpretability. 

6. Estimation of car ownership. Based on the results of previous step, the models for each 

cluster are trained. Then, their predictive performance is evaluated on the test set in terms of 

five standard performance metrics for classification problems: 

• Accuracy. It is the proportion of users correctly classified. 

• Sensitivity (also called true positive rate). It is the quotient between the number of users 

of class 1 correctly classified and the actual number of users of that class. 

• Specificity. It is the quotient between the number of users of class 2 correctly classified 

and the actual number of users of that class. 

• F1-score. It is the harmonic mean of precision (the proportion of correctly predicted 

instances of class 1 out of all predicted instances as class 1) and sensitivity. 

• Area under the Receiver Operating Characteristic Curve (AUC ROC). It measures a 

classifier’s ability to distinguish between classes. The ROC curve plots the sensitivity 

against (1 – specificity) (also called false positive rate) at various classification thresholds. 

The AUC represents the probability of correctly ranking users of class 1 over users of 

class 2. AUC values range from 0.5 (random performance) to 1.0 (perfect classification).  

This methodology is tested and validated in the Madrid region. Nevertheless, it can be applied to 

any region in which similar information is available. Furthermore, it can be applied to assign any 

other profile feature as long as it meets the starting hypothesis.  

2.4.4 Results 

Next, the technical implementation of the methodology and results obtained are described, 

according to the sequential steps introduced in the previous section. 

1. Features computation. The features computed, 70 in total, are: 

• User sociodemographic features: age, household size, income. 

• User mobility patterns: trip distance distribution (quartiles), commuting distance, 

percentage of trips per combination of origin and destination purposes (among home, 

work, or other). 

• Zone sociodemographic features: age distribution of the population (age ranges: 0-19, 

20-39, 40-64, 65-74, ≥75), population density, public transport density (number of train, 

metro, and bus stops per zone area and per residents), whether the residence zone is 
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inside the Madrid M30 ring road, whether the work zone is inside the Madrid M30 ring 

road, distance to Madrid city centre, and number of registered cars in the zone.  

• Zone mobility patterns: trip distance distribution (quartiles) of the zone residents, of 

commuting distance distribution (quartiles) of the zone residents, percentage of trips per 

combination of origin and destination purposes (among home, work, or other) of the zone 

residents, percentage of trips per mode of the zone residents (private vehicle, non-

motorised, and other). 

2. Geographical disaggregation. The features are computed for the following spatial 

disaggregation: 

• District level for the municipality of Madrid. 

• Municipality level for the rest of municipalities of the Madrid region. 

3. Grouping of similar zones. Zones were grouped in three clusters using the k-means 

algorithm based on the population and the number of users in the survey with and without 

private vehicle (i.e., survey sample per zone). Figure 20 shows the population distribution 

and the survey sample distribution for each zone. Figure 21 shows these clusters. As can be 

seen, there is a clear correspondence between the population and sample distribution (Figure 

20) and the clusters grouping (left-hand side of Figure 21). 

4. Data preparation. 

• Zones selection: The zones considered and discarded are depicted in the right-hand side 

of Figure 21. As can be seen, all the discarded zones belong to cluster red (left-hand side 

of Figure 21), composed mostly of rural, less populated, areas of Madrid. 

• Data split: Table 3 shows the number of instances in each set per class. 

 

Figure 20: Population distribution (left) and survey sample distribution per class (centre and right) 
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Figure 21: Cluster of zones (left). Classification of zones to train the ML models (right): in red, zones 

considered, and, in blue, the ones discarded 

Table 3: Number of instances in each set per class. The balanced ratio is also included. It is 

computed as the number of instances of the class 1 by the total number of instances in the set 

Classes 
distribution 

Blue cluster Green cluster Red cluster 
Train 
(80%) 

Test 
(20%) 

Train 
(80%) 

Test 
(20%) 

Train 
(80%) 

Test 
(20%) 

Class 1 21111 5279 11959 2991 5945 1488 
Class 2 12397 3099 4371 1092 1678 418 

Balanced ratio 0.63 0.63 0.72 0.73 0.78 0.78 

5. Model selection and tuning.  

1. Model selection: In all three cases, Random Forest was the best-performing algorithm, 

so it was the selected choice. 

2. Grid search: Table 4 shows the list of values considered for each parameter for the grid 

search process on each cluster. The best combination of parameters for each cluster is 

presented in Table 5. 

Table 4: List of values for each parameter for the grid search 

Parameter Values 
Class balanced ratio [0.7, 0.6, 0.55, 0.5, 0.45, 0.4, 0.3] 
Number features RFE [5, 10, 15, 20, 25, 30, 35, 40] 

Number variables PCA [3, 5, 8, 10, 15, 20, 25, 30, 35, no PCA] 

Table 5: Best combination of parameters from the grid search process for each cluster 

Parameter Class balanced ratio Number features RFE Number variables PCA 
Blue cluster 0.45 15 no PCA 

Green cluster 0.50 15 no PCA 
Red cluster 0.55 15 no PCA 
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The 15 more relevant features identified by the RFE technique for each cluster, and hence 

used to train each model, are: 

• Blue cluster: age, household size, income, population density, user commuting distance, 

trip distance distribution of the user (the 4 quartiles), percentage of residents in the age 

ranges 20-39 and 65-74, percentage of trips per mode of the zone residents (only private 

vehicle and other), and percentage of user trips with OD purpose home-other. 

• Green cluster: age, household size, income, population density, user commuting 

distance, trip distance distribution of the user (the 4 quartiles), percentage of residents in 

the age range 0-19, percentage of trips per mode of the zone residents (only private 

vehicle and non-motorised), percentage of user trips with OD purpose home-other, and 

bus stops density (number of bus stops per residents). 

• Red cluster: age, household size, income, population density, user commuting distance, 

trip distance distribution of the user (the 4 quartiles), percentage of residents in the age 

ranges 0-19 and 75-101, percentage of trips per mode of the zone residents (only private 

vehicle and other), first quartile of the trip distance distribution of the residents. 

6. Estimation of car ownership. One Random Forest was trained for each cluster using the 

parameters obtained from the grid search process, i.e., applying the balanced ratio on the 

class 1 of the training set and RFE with 15 features. Table 6 presents the predictive 

performance of the models for each cluster in the test set, based on the five previously 

described metrics: accuracy, F1-score, sensitivity, specificity, and AUC ROC. As can be 

seen, the three models demonstrate a satisfactory performance, achieving F1-score values 

above 0.80 and AUC ROC values ranging from 0.85 and 0.90. These results indicate that 

the models have effectively learned the patterns that characterize each class, successfully 

distinguishing between both classes and their respective behaviours. 

Figure 22 shows the accuracy of the three models on the test set for each zone. The models 

achieve an accuracy above 0.80 in most of the zones. As can be seen, the zones with worse 

predictive results (in dark) correspond to those zones not considered for training (zones in 

blue in the right-hand side plot of Figure 21). Figure 23 shows the accuracy distribution per 

zone, distinguishing between those zones used for training or not. Despite the model for the 

red cluster has never seen those zones before, it manages to predict with relative precision, 

showing its ability to generalise to new zones. This shows that the features selected 

effectively characterise the car ownership of the users. 

Table 6: Predictive performance of the model for each cluster on the test set 

Metric Accuracy F1-score Sensitivity Specificity AUC ROC 
Blue cluster 0.81 0.82 0.75 0.95 0.85 
Green cluster 0.86 0.87 0.84 0.94 0.89 
Red cluster 0.88 0.89 0.87 0.92 0.89 
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Figure 22: Predictive accuracy of the models per zone 

 

Figure 23: Accuracy distribution. In orange, zones included in the training process, in blue, zones not 

included 

2.5 Household size assignment 

The objective of this development is to estimate the household size of the MND users based on 

household information from surveys. For that, the household size distribution in terms of 

sociodemographic features and place of residence is used to probabilistically assign a household 

size to the MND users. A key part of this development is that the features used to distribute 

household size shall be available in both datasets (the surveys and the MND). 

2.5.1 Data used 

The data sources used for this development are: 

• Spain census data (same data source as in Section 2.3.1). 
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• Household size survey. This data source  

• contains information from the INE about the average household size and percentage of 

unipersonal households per census tract level. 

• Household distribution. This data source contains information from the INE about the 

household size distribution per age group (with a granularity of 5 years, i.e., 0-4, 5-9, …) and 

Autonomous Community of Spain. The  

• MND (same data source as in Section 2.2.1).  

2.5.2 Methodology 

An iterative algorithm for the assignment is defined, consisting of the following steps: 

For each census tract: 

1. Assignment of the unipersonal households. Based on the percentage of unipersonal 

households per census tract and the number of households (computed dividing the total 

population of the census tract by its average household size), the number of unipersonal 

households in the census tract is computed. Then, using the unipersonal household size 

distribution per age group in the Autonomous Community as a probability function, users are 

sampled one by one until the number of unipersonal households of the census tract is 

reached. 

2. Assignment of multi-person household size. Those users not assigned in previous step 

are assigned a household size one by one according to the following process: 

1. Household size assignment. Get the household size distribution in the Autonomous 

Community for the population of the user's age group. Using this distribution as a 

probability function, assign household size to the user. 

2. Update household size distribution. As the average household size is provided at census 

tract level and the household size distribution per age group is provided at Autonomous 

Community level, this distribution may not match the one of the census tract (nor its 

average household size). To couple both, after each household size assignment, the 

distribution for the population of the assigned user’s age group is updated taking into 

account the actual average household size of the census tract (provided by the INE) and 

the average household size of the assignment up to this point. This is done as follows: 

i. Compute the ratio between both average household sizes: 

 

ii. The percentage  of households of size  is updated as: 

, 

for all the households of sizes, . To keep this percentages as a probability, 

once all the percentages are updated, they are normalised: 

 

The distribution  is the new household size distribution for that age 

group.   
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3. Check average household size of the census tract. For that, the average household size 

of the assignment is compared to the average household size according to the INE. 

Specifically, the stopping criterion established is: 

 

. 

If this condition is met, the assignment for this census tract is finished. Otherwise, step 2 is 

repeated user by user, checking the stopping criterion after each reassignment, until the 

condition is met. 

This methodology is tested and validated in the Madrid region. Nevertheless, it can be applied to 

any region in which similar information is available. Furthermore, it can be applied to assign any 

other profile feature as long as similar information is available. 

2.5.3 Results 

Next, the results obtained for the application of the algorithm for the household size estimation of the 

Madrid sample users are shown. Figure 24 shows the scatter plot between the average household 

size per census tract provided by the INE and the one obtained with the assignment. The R2 score 

between both sets is 0.89, showing the effectiveness of the algorithm defined. 

 

Figure 24: Scatter plot between the average household size per census tract provided by the INE and 

the one obtained with the assignment 

2.6 Identification of unusual traffic patterns caused by large-scale 
events 

An AI-powered decision support tool, titled “Traffic Events Risk Assessment and Route Selection” 

has been developed to enhance situational awareness and assist with mobility planning. The system 

comprises two main components: a Fuzzy Inference Engine to classify traffic conditions per road 

network node, as well as a Multi-criteria Decision Analysis Module that prioritises traffic events and 

recommends optimal routes. 
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2.6.1 Fuzzy Inference Engine 

The Fuzzy Inference Engine applies fuzzy logic to evaluate and classify traffic conditions in a manner 

that closely resembles human reasoning. At the core of the model are three key input variables that 

reflect essential aspects of road traffic: vehicle density, traffic speed, and the gap between vehicles. 

Vehicle density represents the number of vehicles within a specific segment of the road network and 

is categorized as low, medium, or high. Traffic speed, which captures the average speed of moving 

vehicles, is classified as slow, normal, or fast. The third input, the gap between vehicles, measures 

the average spacing and is interpreted as short, medium, or long. Each of these input variables is 

defined over a continuous range and then translated into linguistic terms using membership 

functions.  

The output of the model is a traffic condition score, which ranges from 0 to 100. This score is then 

interpreted into one of three descriptive categories: free-flowing (for scores below 40), moderate (for 

scores between 40 and 69), and congested (for scores of 70 and above). These labels provide an 

intuitive understanding of current road conditions while retaining the precision of the underlying 

numerical result.  

The interpretation process is driven by a carefully designed rule base that combines the input 

variables in meaningful ways to produce realistic outcomes. Specifically, the system uses a set of 

27 fuzzy logic rules that express conditional relationships between the input variables and the 

resulting traffic condition. For example: 

▪ When vehicle density is high, traffic speed is low, and the gap between vehicles is short or 

medium, the system infers a congested condition. 

▪ If vehicle density remains high but the speed is high and the gap is long, the model concludes 

that traffic is free-flowing, recognizing that density alone does not necessarily imply 

congestion. 

▪ In cases where vehicle density is medium and the speed is normal or high with long gaps, 

the system typically labels the condition as free-flowing, acknowledging the smoother flow 

associated with moderate traffic volumes and good spacing. 

▪ Conversely, a scenario involving medium density, low speeds, and short gaps results in a 

congested classification. 

▪ For low vehicle density, the rules tend to favor free-flowing outcomes, particularly when 

speed is normal or high and vehicle spacing is adequate. 

An API is available in the following link: Traffic Fuzzy Logic API - Swagger UI. The request body 

should be a JSON array of traffic data records. Each record should conform to the following structure: 

 1.    [ 
 2.        { 
 3.            "id": "0692-11", 
 4.            "dateUpdated": "2025-01-29T18:20:00", 
 5.            "countersLocation": "0692", 
 6.            "countersLocationDesc": "Zadvor", 
 7.            "countersRoadDesc": "R3-645", 
 8.            "countersSection": "1188", 
 9.            "countersDirection": "11", 
10.            "countersDirectionDesc": "Ljubljana - Zadvor", 
11.            "countersLaneDesc": "", 
12.            "countersGeolocationX": "468775", 
13.            "countersGeolocationY": "99786", 
14.            "countersSpeedLimit": "50", 
15.            "countersDate": "2025-01-29", 
16.            "countersTime": "0001-01-01 19:20:00+00 BC", 
17.            "countersNumberVehicles": "132", 
18.            "countersAverageSpeed": "51", 

https://traffic.scoring.rid-intrasoft.eu/docs
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19.            "countersGapBetweenVehicles": "25.1", 
20.            "countersStatus": "1", 
21.            "countersStatusDesc": "Normal traffic" 
22.        }, 
23.        { 
24.            "id": "0692-21", 
25.            "dateUpdated": "2025-01-29T18:20:00", 
26.            "countersLocation": "0692", 
27.            "countersLocationDesc": "Zadvor", 
28.            "countersRoadDesc": "R3-645", 
29.            "countersSection": "1188", 
30.            "countersDirection": "21", 
31.            "countersDirectionDesc": "Zadvor - Ljubljana", 
32.            "countersLaneDesc": "", 
33.            "countersGeolocationX": "468775", 
34.            "countersGeolocationY": "99786", 
35.            "countersSpeedLimit": "50", 
36.            "countersDate": "2025-01-29", 
37.            "countersTime": "0001-01-01 19:20:00+00 BC", 
38.            "countersNumberVehicles": "108", 
39.            "countersAverageSpeed": "44", 
40.            "countersGapBetweenVehicles": "35.7", 
41.            "countersStatus": "1", 
42.            "countersStatusDesc": "Normal traffic" 
43.        },..] 
44.   

The response will return a list of computed traffic conditions with the following structure: 

   1.  [ 
 2.     { 
 3.         "location": "Zadvor", 
 4.         "direction": "Ljubljana - Zadvor", 
 5.         "traffic_condition_score": 60.0, 
 6.         "traffic_condition_label": "Moderate" 
 7.     }, 
 8.     { 
 9.         "location": "Zadvor", 
10.         "direction": "Zadvor - Ljubljana", 
11.         "traffic_condition_score": 50.0, 
12.         "traffic_condition_label": "Moderate" 
13.     }, 
14.     { 
15.         "location": "Stara Cerkev", 
16.         "direction": "Kočevje - Ljubljana", 
17.         "traffic_condition_score": 62.0, 
18.         "traffic_condition_label": "Moderate" 
19.     },..] 
20.   

2.6.2 Multi-criteria Decision Analysis Module 

This service offers a decision support framework grounded in the TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution) methodology, an established and widely respected 

technique in multi-criteria decision analysis2. The process starts with the construction of a weighted 

decision matrix, where each alternative is assessed according to several criteria, each reflecting a 

different dimension of performance or value. These criteria are normalised and adjusted according 

 

 

 

2 Pandey, V., Komal & Dincer, H. (2023). A review on TOPSIS method and its extensions for different applications with recent 

development. Soft Computing 27, 18011-18039. 
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to user-defined importance weights to ensure a fair and meaningful comparison. The methodology 

then computes the geometric distance of each alternative from an ideal solution (defined by the best 

achievable performance across all criteria) and from an anti-ideal solution (representing the worst 

possible outcomes). Finally, the distances of each alternative from both the ideal and anti-ideal 

solutions are compared, allowing the calculation of a closeness coefficient for each alternative. 

Based on these coefficients, the service then scores and ranks the alternatives accordingly. 

For example, consider a scenario where the alternatives represent different routes for a trip, and the 

criteria for evaluation include travel time, emissions, total distance, and the number of events 

detected in the road network (e.g., accidents, road closures, or traffic jams). Each route will be 

evaluated on these criteria: a faster travel time is preferred, lower emissions are better, shorter 

distance is more favourable, and fewer events detected generally indicate a smoother journey. The 

decision matrix is created by collecting data on each route’s performance against these criteria. The 

service then normalises this data, ensuring that each criterion is measured on the same scale, and 

assigns weights based on the decision maker. Once the data is normalised and weighted, the service 

computes the distances of each route from the ideal solution, which could represent the best 

performance across all criteria (e.g., the quickest travel time, lowest emissions, shortest distance, 

and minimal events). By comparing the alternatives’ distances to both the ideal and anti-ideal 

solutions, the service calculates a closeness coefficient for each route, indicating how closely each 

route approximates the ideal solution and how far it is from the worst outcome. Finally, the service 

scores and ranks the alternatives based on these closeness coefficients, helping the decision maker 

to easily identify the most optimal route. 

The service does not stop at numerical output (i.e. scores). It includes a suite of visual analytics to 

enhance interpretability and transparency. Detailed line plots and radar charts illustrate how each 

alternative performs relative to others, highlighting strengths and weaknesses briefly (Figure 25 and 

Figure 26). Bar graphs break down the scores criterion by criterion, offering a deeper understanding 

of the decision drivers (Figure 27). Annotated ranking plots and directed graphs then summarise the 

overall results, guiding stakeholders clearly toward the best-informed decision (Figure 28 and Figure 

29). 

 

Figure 25: Line plot for illustrating how each alternative performs relative to others 
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Figure 26: Radar chart for illustrating how each alternative performs relative to others 

 

Figure 27: Bar graph for breaking down the scores criterion by criterion 
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Figure 28: Annotated ranking plot for summarizing the overall results 

 

 

Figure 29: Directed graph for summarizing the overall results 

An API is available in the following link: Topsis Scoring API - Swagger UI. The JSON request body 

is structured to include the decision matrix, weights, and other parameters necessary for the TOPSIS 

methodology. Here’s a breakdown: 

• matrix: This 2D array represents the decision matrix where each row corresponds to an 

alternative, and each column corresponds to a criterion.  

• weights: A list of values representing the importance of each criterion.  

• norm_method: Defines the normalization method to be used. “v” indicates vector 

normalization. 

• ideal_solution_method: Specifies the method to determine the ideal solution. “m” indicates a 

method based on maximizing or minimizing values to define the ideal. 

• plot_results: A Boolean value indicating whether visual analytics, such as plots and charts, 

should be included in the response. 

• names_of_alternatives: A list of alternative names.  

• names_of_criteria: A list of criterion names. 

https://topsis.scoring.rid-intrasoft.eu/docs
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 1. { 
 2.   "matrix": [ 
 3.     [0.62, 0.51, 0.22, 0.56, 0.85], 
 4.     [0.85, 0.95, 0.45, 0.56, 0.32], 
 5.     [0.72, 0.87, 0.92, 0.99, 0.84], 
 6.     [0.65, 0.34, 0.5, 0.4, 0.56] 
 7.   ], 
 8.   "weights": [0.4, 0.3, 0.05, 0.05, 0.2], 
 9.   "norm_method": "v", 
10.   "ideal_solution_method": "m", 
11.   "plot_results": true, 
12.   "names_of_alternatives": ["A1", "A2", "A3", "A4"], 
13.   "names_of_criteria": ["C1", "C2", "C3", "C4", "C5"] 
14. } 
15.   

The JSON response provides the calculated closeness coefficient for each alternative, which 

indicates how closely each alternative approaches the ideal solution: 

• closeness_coefficient: This array contains the closeness coefficient for each alternative. 

The higher the score, the closer the alternative is to the ideal solution. 

o Each object in the array includes: 

▪ alternative: The name of the alternative. 

▪ score: The closeness coefficient score for the alternative. 

 

 1. { 
 2.     "closeness_coefficient": [ 
 3.         { 
 4.             "alternative": "A1", 
 5.             "score": 0.4209733307361603 
 6.         }, 
 7.         { 
 8.             "alternative": "A2", 
 9.             "score": 0.6375610828399658 
10.         }, 
11.         { 
12.             "alternative": "A3", 
13.             "score": 0.7791176438331604 
14.         }, 
15.         { 
16.             "alternative": "A4", 
17.             "score": 0.20269949734210968 
18.         } 
19.     ], 
20.     "execution_time": 20.7369, 
21.     "message": "TOPSIS calculation completed successfully." 
22. } 
23.   

2.7 Coupled Aimsun-FleetPy Simulation Data 

2.7.1 Introduction 

TUM developed techniques for the efficient integration of urban logistics in DRT services. These 

techniques will be used to simulate UC3 in Madrid. The freight and DRT demand data for Madrid are 

generated by Nommon which are used as input for a co-simulation of Aimsun Next and FleetPy for 

the city of Madrid. The Madrid network will be provided by Aimsun. 

FleetPy is a Python-based DRT simulation tool developed by TUM. It does not have an integrated 

traffic microsimulation functionality; the travel times are mainly calculated using scaled free-flow 
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travel times obtained from Open Street Map[1] . Thus, it lacks a detailed consideration of other 

vehicles participating in the overall traffic. To fill this gap, FleetPy is coupled with Aimsun Next using 

the Python API. The fleet is controlled, i.e., vehicle schedules are computed, in FleetPy while vehicle 

movements are conducted within the Aimsun environment. The bridge allows the consideration of a 

more realistic traffic simulation in the FleetPy control decisions which replicates the unexpected 

delays the DRT might face in real traffic. The details of the Aimsun-FleetPy bridge are provided in 

D2.1 (Specification  and  initial  version  of  the adapted traffic and fleet management models) and 

D2.5 (D2.5 Final implementation of models).  

In the D3.1, it was mentioned that the Aimsun-FleetPy bridge will be used for UC3 and the respective 

data required for the data was accordingly described. However, over the course of the project, it was 

decided that for the scope of Madrid UC3, the available  microscopic simulation model for the 

motorway ring road M30 of Madrid, was not suitable for this application. Instead, a macroscopic 

transport model of the whole city of Madrid is used, covering the urban environment. This change is 

also mentioned in D2.5, where the technique of exporting skim matrices from Aimsun Next’s 

macroscopic traffic assignment is described for incorporating realistic travel times in FleetPy. 

According to this modification, the following sections describes the main data used for Aimsun Next 

and FleetPy to simulate the UC3 in Madrid. The following sections are very similar to the 

corresponding sections in D3.1, however, necessary changes are made to reflect the adoption of 

macroscopic model for UC3 instead of microscopic model. 

2.7.2 Data Used 

The main data inputs for UC3 are provided by Nommon and Aimsun and fused together in a co-

simulation of FleetPy and Aimsun Next. The co-simulation of Aimsun Next and FleetPy will not be 

in real-time as the Aimsun-FleetPy bridge for microscopic simulation will not be used. Rather, 

travel time of edges will be exported to FleetPy after separating macroscopic traffic assignments in 

Aimsun Next. Thus, the main data inputs to UC3 will consists of the following: 

• A calibrated macroscopic (or mesoscopic) model of Madrid in Aimsun Next. 

• The origin-destination (OD) pair of the DRT passenger request and the time when the 

request is made.  

• The OD pair of the freight requests. UC3 assumes to serve freight requests from depots. 

Therefore, the origins will be freight requests will be limited to those depots. 

• Rest of the FleetPy simulation parameters to describe the fleet control algorithms used. 

2.7.3 Methodology 

For a successful simulation of UC3, some manipulation of the input data is required as described 

below.   

The first and the foremost is the export of the Aimsun Next’s network to FleetPy. Python scripting in 

Aimsun Next is used for this purpose. Then, the freight and DRT demand data is mapped to the 

exported FleetPy network. For simplicity, FleetPy generally limits the locations that can be visited by 

the DRT fleet to be located on the city network nodes. Thus, instead of the exact geographical 

locations, the closest node of the city network is used. The pickup or delivery of freight or passengers 

are, therefore, not considered to be in between network edges, rather, they are assumed to be 

exactly on network nodes. To reduce the computational efforts of simulating UC3, it is also decided 

that a smaller set of nodes within Madrid network will be used for picking up and dropping off 

passengers as well as the freight requests. This smaller set of nodes are termed as meeting points. 

Thus, the DRT service considered will not be offered door-door service. 

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en-GB&rs=en-US&wopisrc=https%3A%2F%2Fnetcompany.sharepoint.com%2Fsites%2FCONDUCTOR%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F7d5e4e9a0d1a46a18433a58feff03890&wdpid=3b49af5d&wdenableroaming=1&wdfr=1&mscc=1&hid=801793A1-60CE-C000-88E5-23530B123B75.0&uih=sharepointcom&wdlcid=en-GB&jsapi=1&jsapiver=v2&corrid=084501c7-d060-1898-11cd-0c717c46a5b5&usid=084501c7-d060-1898-11cd-0c717c46a5b5&newsession=1&sftc=1&uihit=docaspx&muv=1&cac=1&sams=1&mtf=1&sfp=1&sdp=1&hch=1&hwfh=1&dchat=1&sc=%7B%22pmo%22%3A%22https%3A%2F%2Fnetcompany.sharepoint.com%22%2C%22pmshare%22%3Atrue%7D&ctp=LeastProtected&rct=Normal&wdorigin=Other&afdflight=45&csc=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush#_ftn1
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The second is regarding the clustering of the freight requests. The study assumes same-day freight 

requests, which are significantly less time critical than the DRT passenger requests and can be 

delivered at any time within the same day. However, it is assumed that the DRT service should at 

least provide some time window (ranging in hours) within which the freight requests are served. 

Since it is assumed that the freight requests are mainly last-mile delivery requests known in advance 

unlike the DRT passenger requests, the freight requests need to be clustered in a way that the 

estimated freight delivery time windows are fulfilled. Such a clustering can be geographically, 

temporally or a combination of both, performed in a preprocessing step. The main challenge faced 

in this regard is that the service quality of DRT passengers must not be compromised significantly. 

Geographically, these clusters do not need to be artificial regions, rather, they can also be based on 

administrative units such as city districts. 

The third data manipulation is regarding the traffic state data collected from the Aimsun Next 

simulation. To plan vehicle routes and assign vehicles to DRT requests, FleetPy requires information 

on the travel times and travel distances between different OD pairs. For this purpose, the 

macroscopic simulation in Aimsun Next is carried out separately and the average travel time of each 

network edge is exported via skim matrices. These travel times are then used in FleetPy to calculate 

the travel times and distances using the Dijkstra algorithm.  

2.8 Space-time context and heterogeneous data fusion 

2.8.1 Introduction 

In this section, we present the development of heterogeneous data fusion in the second part of the 

project and the usage in the UC2. The Context Graph is a graph-based data fusion framework that 

provides a semantic description of the stored entities while explicitly encoding their spatiotemporal 

and hierarchical context. By linking each data point to a structured context layer, it enables 

advanced reasoning, contextual similarity search, and automated feature extraction across 

heterogeneous data sources. 

In the Context Graph, both contexts and entities are stored explicitly in the graph, while 

measurements and other time-varying variables are encoded as properties on the edges between 

them. For example, measuring and storing a city’s temperature, measured on March 1st 2025, at 

11:30, is done as: 

MATCH (p:City {name: "Ljubljana"}), (c:CityDay{year: 2025, month: 3, day: 

1}, CityHour{hour: 11, minutes: 30}) 

CREATE (c)-[:WEATHER_MEASUREMENT {Temp: 28}]->(p) 

Contexts are structured hierarchically from the most coarse CityMonth context to the more 

granular CityHour. Spatial adjacency is represented with undirected edges ADJ_SPACE 

(implemented as bi-directional edges), while parental relationships are represented with edges 

PARENT_SPACE. Similarly, temporal adjacency is represented by directed edges ADJ_TIME and 

parental relationships are represented by edges PARENT_TIME. The figure below shows the 

explicit encoding of contexts. 
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Figure 30: Explicit context encoding encodes points of spacetime as joint spacetime nodes 

In the second part of the project, we scaled the Context Graph and further experimented with its 

design. We compared two different context encodings: (i) explicit context encoding, and (ii) implicit 

context encoding. Our results showed that explicit context encoding provides better performance 

for context-based retrieval and contextual data aggregation. This is largely because of the better 

indexing options. 

Essentially, due to the difficulties with query-tweaking and slow data imports, further 

experimentation with the Context Graph was dropped. While the Context Graph does provide a 

viable option for storing heterogeneous data in a single structure, we found that the technologies 

are not mature for practical large-scale implementation. While in small-scale implementations 

graph algorithms can be used to aggregate local contextual information, the connected nature of 

the large-scale implementation, with super nodes (typically coarse contexts like CityYear), 

makes it impractical to automate queries in the API layer. After the graph reaches a certain scale, 

both the queries and the data model need to be redesigned. Due to the limitations of the current 
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graph databases, the queries must be analyzed and optimized to provide practical performance. 

Likewise, supernodes must be split in order to allow traversal and aggregation. A typical example 

is the Weather node, which would be connected to every CityHour and CityDay node in the 

context structure. To avoid a high degree, this node is split into several WeatherMonth nodes, 

which allows for practical traversal in our current graph scale. 

2.8.2 Explicit vs Implicit Context Encoding 

In this section, we present two alternative design options for the Context Graph. In the first 

alternative, called explicit context encoding, space and time are represented jointly in spacetime 

nodes (e.g. CityHour). This has the advantage of easier indexing and more efficient traversal. In 

this design, looking up a context only requires fetching a single node. The second alternative 

encodes the spatial and temporal contexts as disjoint structures. Here, looking up a context 

requires querying two nodes. However, in this representation less space is required to store the 

two disjoint contexts. This second alternative also seems to be a more intuitive option for many 

researchers. The explicit encoding is shown in the Figure 30 above, while the implicit encoding is 

shown in the Figure 31 below. In implicit spacetime contextualisation, the spatial and temporal 

contexts are encoded separately. In this representation, measurements are stored on hyperedges 

represented by the yellow nodes in the figure. 
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Figure 31: Implicit context encoding encodes points of spacetime as joint spacetime nodes 

Our experience showed that explicit context encoding is more effective for context-based retrieval 

and aggregation use cases. When scaling the graph, the implicit approach frequently caused 

issues, requiring a long time to process relatively simple queries. This is especially true for 

aggregations over contexts. We therefore opted to stay with explicit context encoding. 

2.8.3 Data Structures 

Here we present some of the data structures stored in the Context Graph. We focus on the data 

most related to the Slovenian pilot which includes traffic data and weather data.  

Traffic measurements, shown in the 32 below, are also contextualised by CityHour. Traffic 

measurements are stored on the link between the entity CounterLocation and context 

CityHour. Because of scaling issues, CounterLocation was broken up into several 

COUNTER_MONTH nodes. The location of the counter is stored as node CounterLocation and is 

linked to a road segment via edge BELONGS and then further to the nearest city. Because of 

scaling issues, these supernodes were broken up into COUNTER_MONTH nodes. The 

measurements are stored on the edge TRAFFIC_MEASUREMENT linking COUNTER_MONTH to its 

context CityHour. 
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Figure 32: Traffic measurements data structures as stored in the Context Graph 

Traffic events are stored as hyperedges (i.e. hyperedge EVENT) linking the road segment (i.e. node 

Road) to the CityHour contexts that indicate the start and end of the event (Figure 33). Because 

Neo4j does not support hyperedges, the hyperedge EVENT is physically stored as a node. 
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Figure 33: Traffic events data structures as stored in the Context Graph 

Weather measurements and weather forecasts are linked to both CityDay and CityHour 

contexts. Like with traffic events, to avoid supernode issues, the node Weather was hierarchically 

split into WeatherMonth nodes. Weather measurements are stored on the edge 

WEATHER_MEASUREMENT linking node WeatherMonth to CityHour and CityDay contexts. 
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Figure 34: Weather measurement data structures as stored in the Context Graph 

Weather forecasts require additional structure that would store the forecasts for 2 weeks in 

advance for each day. Thus, a weather forecast is a hyperedge called FORECAST linking 

WeatherMonth to two CityDay contexts (Figure 34). The first context represents the publication 

day of the forecast and is connected via the BASIS edge. The second context is the target day for 

which the forecast is made and is linked using edge FORECAST_MEASUREMENT. For each base 

day, we store 14 forecasts for two weeks into the future. The design of the weather forecasts is 

shown in the Figure 35 below. Weather forecasts link WeatherMonth to two contexts. The first is 

the publication day and is linked using edge BASIS while the second is the target day and is linked 

via edge FORECAST_MEASUREMENT. 
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Figure 35: Weather forecasts data structures as stored in the Context Graph 

As we have the data structures in place and the data ingestion is running continuously, we used 

the Context Graph architecture to create the API for accessing Slovenian traffic data and Slovenian 

traffic events data, which is available to the CONDUCTOR partners. The main use of this Context 

Graph API is in UC2 for the Traffic Events Assessment Services. 

2.8.4 Practical Considerations 

While graph databases offer expressive modelling capabilities and flexible edge traversal, their use 

as a primary store for time series measurements introduces significant practical limitations. 

First, graph databases are not optimized for high-throughput, append-only operations typical of 

time series ingestions. Inserting large volumes of measurements leads to performance bottlenecks 

and required query optimization and tweaking when the system scales. This is especially true 

when storing measurements on edges, which require locking both adjacent nodes when 

performing an insertion or update, causing significant bottlenecks. 

Second, querying time series data in a graph database is less efficient than in columnar or time 

series databases. Operations like time-window aggregations, downsampling, or rolling statistics 

require complex traversal logic, which increases latency, and in some cases makes the query 

impractical. 

Graph storage also incurs higher memory and storage overhead to explicitly store nodes, edges, 

and their metadata. For dense measurements, this overhead scales poorly and can become 

prohibitive. 
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For these reasons, we find the use of a graph database to store time series measurements 

impractical and suggest using a columnar database instead. As for the graph database, the best 

use case would be rich semantic data saved in entities. This would enable having a big context of 

data. From there, it would be possible to build a classifier for traffic management and future traffic 

forecasting. 
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3. NETWORK LOAD BALANCING 

3.1 Traffic management solution for signal vehicle couple control 

A crucial aspect of load-balancing optimization in transportation networks is the efficient distribution 

of routes for Connected and Autonomous Vehicles (CAVs). Leveraging advanced sensing and 

communication technologies, CAVs can dynamically adjust their routes in real time based on 

prevailing traffic conditions. This capability allows them to redistribute across multiple pathways, 

mitigating bottlenecks and alleviating congestion. 

When integrated with machine learning algorithms for predictive traffic management, dynamic 

routing optimization enables a proactive approach to load balancing by anticipating and 

circumventing potential bottlenecks. Furthermore, cooperative communication among CAVs 

facilitates coordinated route planning, ensuring smoother traffic flow and reducing congestion. 

Adaptive interaction with traffic signal systems further enhances efficiency by optimizing signal 

control, regulating flow, and minimizing delays at critical intersections. 

Beyond improving overall network performance, environmentally conscious route allocation in CAVs 

contributes to sustainability by reducing emissions and fuel consumption. By optimizing travel routes 

and minimizing idle time, CAVs foster a more eco-friendly and efficient urban mobility ecosystem. 

This section explores advancements in traffic management strategies involving Signal-Vehicle 

Cooperative Control (SVCC) and CAVs for effective network load balancing. 

3.1.1  Proposed innovation 

To address this challenge, we evaluated the following hypotheses: Multiple Traffic Management 

Centres (TMCs) can oversee a fleet of fully CAVsthrough a hierarchical control framework. 

Additionally, we assume that each origin-destination (OD) pair is linked by one or more predefined 

routes, with the relevant TMC possessing complete knowledge of each CAV's origin and destination. 

In this study, we examined both fully autonomous and mixed traffic conditions. Our objective is to 

optimize the traffic control strategy for key arterial roads within the network while simultaneously 

determining the optimal path assignment for the entire CAV fleet. Specifically, this involves 

optimizing the proportion of CAVs assigned to each OD pair and corresponding route to enhance 

overall network efficiency. 

3.1.2 Specification 

This section presents a set of principles designed for the management and routing of CAV fleets. 

The proposed approach is fundamentally based on advanced sensitivity analysis, leveraging 

simulations to evaluate various scenarios and their impact on the network at different CAV 

penetration rates. To ensure that overall network demand accurately reflects real-world traffic 

patterns, the simulation model is meticulously developed to align with well-calibrated existing 

models. 

The simulation itself is a sophisticated system, employing mesoscopic models to comprehensively 

analyse traffic conditions on the M30 corridor, in Madrid, over an extensive study area. This entails 

incorporating realistic connectivity assumptions, accurately detecting CAVs within the simulation, 

integrating traffic signal control plans, and providing detailed route guidance. Notably, the 
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methodology combines decentralized control for individual CAVs with hierarchical traffic 

management stations that oversee the broader CAV deployment. 

Additionally, the strategy includes an extensive feasibility study, along with the development of key 

performance indicators to assess the impact of CAVs, rerouting strategies, and external events. This 

holistic approach ensures a thorough evaluation of the proposed system’s effectiveness in optimizing 

traffic control and safety, both within the city of Madrid and in larger urban environments. 

3.1.3 Progress of the work performed 

 

Figure 36: Schematic diagram for sequential SVCC optimization 

An illustration of Signalized Vehicle-Coupled Control (SVCC) in operation is presented in Figure 36. 

For each predefined OD route, the SVCC scheme optimizer proposes a refined traffic control 

strategy for a selected set of intersections and corresponding CAV distribution percentages. The 

SVCC scheme follows a sequential optimization approach, first determining the optimal percentage 

of CAVs assigned to each OD route. Using this information, the model then identifies the most 

effective traffic control strategy. 

The SVCC OD route percentage optimizer derives its results by analysing key performance metrics, 

including congestion levels, CAV energy consumption, overall emissions, and travel times for both 

CAVs and conventional vehicles. In each iteration, updated CAV distribution percentages for each 

OD route are generated based on these metrics. 

In Stage 1, the Dynamic Traffic Assignment (DTA) module calculates Key Performance Indicators 

(KPIs) such as congestion, emissions, the travel time disparity between CAVs and conventional 

vehicles, and CAV energy consumption. These KPIs are then fed into the traffic control optimizer 

module, in stage 2, which develops an updated traffic control plan. The revised plan is subsequently 

incorporated into the transport simulation program, generating a new model that optimizes 

intersection phase timings and CAV route distributions. 
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The primary objective of this optimisation process is to reduce congestion, minimise emissions, 

decrease the travel time gap between CAVs and conventional vehicles, and enhance CAV energy 

efficiency, thereby improving overall network performance. 

 

 

Figure 37: Flowchart for dynamic incident management with CAVs 

 

Figure 38: Dynamic re-routing of CAVs based on current status of network 

Another key functionality developed within this module is the dynamic rerouting of CAVs based on a 

decentralised control scheme. Once the initial CAV route assignment and linked signal optimisation 

phase are completed, the dynamic rerouting mechanism is activated. In this phase, CAVs on 

predefined critical routes are dynamically reassigned based on path costs, which are recalculated at 

predefined simulation intervals. A flowchart illustrating this process is presented in Figure 37. 

To further elaborate on this scheme, consider the scenario depicted in Figure 38. The leftmost figure 

represents the initial state, where node A serves as the origin and node K as the destination. At the 

start of the trip, the costs for all available paths between A and K are computed. As shown in the 

second figure, two primary routes are selected: a red path and a green path. The CAV demand is 

distributed across both routes, while conventional vehicles follow the green path as per the fixed 

path scheme. 

In the rightmost figure, an incident occurs between nodes B and F, causing a complete blockage of 

the green path. This disruption triggers the rerouting mechanism, prompting the recalculation of path 

costs. Since CAVs are managed by the TMC, they are immediately redirected to the remaining viable 

route (red path). However, conventional vehicles, which lack centralized coordination, remain stuck 
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at node B due to the incident. This dynamic rerouting capability allows CAVs to reach their 

destinations efficiently, in contrast to conventional vehicles that experience delays due to network 

disruptions. 

By implementing this decentralised control scheme, the overall throughput of the transport network 

can be enhanced while also improving the system’s resilience against unforeseen incidents and 

disruptions. In this research direction, we have tested the centralised CAV routing and signal 

optimisation. Decentralised incident management using CAV routing has been successfully tested 

along the main route and signal optimisation process. Currently, we are trying to adapt the module 

for UC1 Madrid's M30 scenario. 

3.2 Social routing with multimodal perspective 

Deliverable D3.2 presents a multi-modal social rerouting model, that is a travel demand management 

measure where a portion of travellers is asked to make individual sub-optimal yet acceptable travel 

choices for the improvement of travel conditions of the population (social re-routing). This measure 

aims to bridge the gap between user equilibrium and system optimum, by re-distributing traffic in a 

way that is beneficial for the system and does not significantly deteriorate the travel conditions for 

individuals. 

The literature review in D3.2 revealed that travellers may not exhibit rational decision making, e.g., 

by using a fast but not necessarily shortest path between their origin and destination. In literature, 

this is known as 'boundedly rational choice behaviour'. This characteristic can be used exploited for 

the development of network loading balancing techniques, since system performance can be 

improved by slightly degrading the level of service for a group of users with eliciting a change in 

travel behaviour, and thereby the objectives of the system and of users can be balanced. In fact, 

some travellers may not notice these deviations, or may not act on it, and as such can be labelled 

acceptable (see Vreeswijk et. al., 2013). However, the margins of such thresholds are fuzzy, i.e., the 

indifference band is person- and situation-specific. In deliverable D3.2, a network load balancing 

method was presented, where passengers received advice to use specific routes to steer the 

network towards a system optimum. This is a difficult task in general since the travel conditions, and 

thereby the compliance with advice depends on the response of individuals to the advice, but the re-

routing behaviour of receptive travellers may also elicit responses from travellers that are not 

targeted or reached by travel advice but may adapt their travel choices in response to the changing 

behaviour of others (Eikenbroek et. al., 2022; Szep et. al., 2023). As such, these responses need to 

be anticipated to prevent unintended effects. In a public transit setting, additional challenges appear 

since the timetable and limited vehicle capacity may limit the potential detours that can be offered. 

In this setting, the social rerouting framework presented in D3.2 adopts a bilevel framework, where 

network-wide feedback effects are anticipated through a novel passenger equilibrium assignment, 

through which passenger responses are predicted. 

The hierarchical framework can be used to formulate a mixed-integer program, implicitly finding the 

best-possible advice to receptive travellers while respecting the indifference band and improving 

efficiency in terms of total generalized travel time, accounting for both travel time and crowding levels 

in relation to the limited capacity and the possibility that it may be impossible to board a vehicle if 

capacity is reached. The potential of social rerouting in public transport was assessed by performing 

numerical experiments using data from the Twente public transport network, revealing that if social 

travellers only accept detours of 5 or 10%, the maximum possible improvement in network efficiency 

is 0.6 and 0.9%, respectively (with a mimic efficiency improvement of 1.1% in system optimum).  
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The initial version of the model considered a deterministic setting, i.e., without uncertainty. In the 

remainder of this section, we discuss the possibility to account for various uncertainties that appear 

when advising routes for the benefit of the system. Accounting for emerging information is important, 

since demand and supply are inherently variable (e.g., delays and disruptions), and travellers react 

to and anticipate changing levels of information, e.g., through a travel planner or re-routing based 

on previous experiences. When modelling travel behaviour under uncertainty, (Eikenbroek et. al., 

2022) identified two basic models. Travellers can be assumed to be non-adaptive, i.e., choosing a 

single habitual route independent of the occurring scenario, or travellers exhibit (fully) adaptive 

behaviour, using a travel planner to adapt their behaviour accordingly. In a stochastic network load 

balancing setting, the question is how to design social travel advice while accounting for the 

uncertainties that may appear and the corresponding responses in travel behaviour.  

We introduce notations from D3.2. Given is a directed traffic network 𝐺 = (𝑉, 𝐸), with 𝑉 being the set 

of nodes, and 𝐸 being the set of directed edges (road, links, or arcs), 𝑒 = (𝑖, 𝑗), with 𝑖, 𝑗 ∈ 𝑉. There 

is a set of OD pairs 𝑤 = (𝑡𝑤 , 𝑠𝑤)  ∈ 𝑉  × 𝑉. Each OD-pair 𝑤 ∈ 𝒲 has a corresponding demand 𝑑𝑤 >

0, and is connected by a set of simple directed paths or routes ℛ𝓀. The set of ℛ of all paths in the 

network is the union of the path sets per OD-pair, i.e., ℛ = ⋃ ℛ𝓌𝑤∈𝑊 . A distribution of the demand 

𝑑 is a pair of flow vectors (𝑓, 𝑥) = (𝑓𝑟 , 𝑟 ∈ ℛ; 𝑥𝑒, 𝑒 ∈ 𝐸) so that Λ𝑓 =  𝑑, Δ𝑓 −  𝑥 =  0, 𝑓 ≥ 0, where 

Λ ∈ ℝ|𝒲|×|ℛ| is the OD-path incidence matrix, with Λwr = 1 if route 𝑟 is in ℛ𝓌, and  Λ𝑤𝑟 = 0 otherwise. 

Δ ∈ ℝ|E|×|ℛ| is the arc-path incidence matrix, defined by Δer = 1 if link 𝑒 is in route 𝑟, and Δ𝑒𝑟 = 0 

otherwise. Each arc 𝑒 in the network has a corresponding (link) flow-dependent, separable non-

negative, continuous, convex and strictly monotone disutility or travel cost function 𝑙𝑒: ℝ+ → ℝ+. The 

route cost 𝑐𝑟(𝑓), induced by traffic flow (𝑓, 𝑥), is the sum of travel costs of all edges constituting that 

path:  𝑐𝑟(𝑓) = ∑ 𝑙𝑒(𝑥𝑒)𝑒∈𝑟 . The set of feasible flow distributions is denoted by ℱ. 

Let us assume that the uncertainty appears in (i) the portion of travellers that can be nudged towards 

individually sub-optimal and system-beneficial routes and (ii) the travel conditions, and more 

specifically the travel times. In our setting this means that an a-priori unknown share of travellers is 

willing to act for the benefit of the system, and only if the expected a-posteriori travel time on the 

suggested path is at most 𝜀 > 0 larger than travel time on the shortest path. We consider probability 

space (Ω,  ℱ,  𝑃), with both travel times and portion of receptive demand dependent on the elements 

𝜔 ('scenarios') of Ω, and we assume Ω to be a finite set, with mass 𝑃: Ω → [0,1], so that ∑ 𝑃(𝜔)𝜔∈Ω =

1$, and 𝑃(𝜔) > 0 . Note that here we do not make any assumptions regarding independent of travel 

times. Since supply and demand are uncertain, we model the route and link flows to be we dependent 

on the scenario, that is (𝑓(⋅), 𝑥(⋅)) is a pair of 𝜔-dependent route and link flows (𝑓(𝜔), 𝑥(𝜔)) ∈

ℝ|ℛ| × ℝ|𝐸| . As a result, route costs and link flows also become scenario-dependent.  

 

Considering (fully) adaptive behaviour, (𝑓(̅⋅), 𝑥̅(⋅)) with (𝑓(̅𝜔 ), 𝑥̅(𝜔)) ∈ ℱ for each 𝜔\𝑖𝑛 \𝑂𝑚𝑒𝑔𝑎 is 

in equilibrium if the following condition holds for all 𝑤 ∈ 𝒲, 𝑟 ∈ ℛ, the following condition hold: 

for any r,q ∈ ℛ𝓌  𝑓𝑟̅(𝜔 ) > 0 ⇒ 𝑐𝑟(𝑓(̅𝜔), 𝜔) {
≤ 𝑐𝑞(𝑓(̅𝜔), 𝜔) 𝑖𝑓 𝑓𝑞̅(𝜔 ) = 0

= 𝑐𝑟(𝑓(̅𝜔), 𝜔) 𝑖𝑓 𝑓𝑞̅(𝜔 ) > 0
  (1) 

 

In case of non-adaptive behaviour, (𝑓(̅⋅), 𝑥̅(⋅)) with (𝑓(̅𝜔 ), 𝑥̅(𝜔)) ∈ ℱ for each 𝜔\𝑖𝑛 \𝑂𝑚𝑒𝑔𝑎 is in 

equilibrium if the following condition holds for all 𝑤 ∈ 𝒲, 𝑟 ∈ ℛ, the following conditions hold 

for any r,q ∈ ℛ𝓌  𝑓𝑟̅(𝜔 ) > 0 ⇒ 𝑐𝑟(𝑓(̅𝜔), 𝜔) +

𝜆𝑟(𝜔) {
≤ 𝑐𝑞(𝑓(̅𝜔), 𝜔) + 𝜆𝑞(𝜔) 𝑖𝑓 𝑓𝑞̅(𝜔 ) = 0

= 𝑐𝑟(𝑓̅(𝜔), 𝜔) + 𝜆𝑞(𝜔) 𝑖𝑓 𝑓𝑞̅(𝜔 ) > 0
   

 (2) 
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with additionally 𝑓(̅𝜔0) = 𝑓̅(𝜔1) for any 𝜔0, 𝜔1 ∈ Ω, and 𝜆(⋅) so that 𝐸𝜔{𝜆(⋅)} = 0. Intuitively, these 

conditions say that traffic is distributed such that flow is assigned to a path that is not the shortest in 

a scenario, but is the shortest on average, i.e., in expectation.  

We study the effects of uncertainty on social rerouting, assuming the system goal is to minimize 

expected total travel time. In this case, all travellers receive route advice, which is in expectation at 

most 𝜀 > 0 worse than the expected shortest path (see Eq. 2). The acceptance rate 𝑝(⋅) is unknown 

beforehand, and therefore scenario-dependent, with a decline rate of 1 − 𝑝(𝜔) in case of scenario 

𝜔. Those that do not comply with the social travel advice, travel along the shortest path (see Eq. 1). 

The challenge is to have acceptable expected travel times such that receptive travelers comply with 

social travel advice, anticipating that a random portion also rejects advice. In this setting with 

separable and increasing travel time functions, this problem is a mathematical program with 

equilibrium constraint that reduces to a bilevel optimization problem.  

To illustrate the relevance of considering uncertainties in the context of network load balancing we 

consider the following adapted version of Braess’ paradox, with the travel time and demand provided 

in Figure 39 below. When traffic is in Wardrop equilibrium, demand is distributed over the three 

routes such that travel times are equal (85.38). In system optimum, the vertical link is not used. Total 

travel time in system optimum is approximately 388, while in Wardrop equilibrium total travel time is 

427.  

 

 

Figure 39: Adapted Braess paradox network 

We expand the social rerouting model of D3.2 and consider the effect and potential of social rerouting 

in a stochastic setting. We assume that there are two scenarios i.e., Ω = {𝜔1, 𝜔2} with 𝜔-dependent 

acceptance rate  

𝑝(⋅) = {
𝑝(𝜔1) = 1/5 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1/4

𝑝(𝜔2) = 4/5 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 3/4
 . 

Here, to comply with the user-induced constraints regarding the maximum-possible detour, the 

different scenarios have to be anticipated. In Figure 2, we display the expected total travel time as 

function of the maximum detour accepted by those travellers that comply with the advice. For 

comparison, we also display the expected total travel assuming all travellers are receptive for advice, 

and if 65% of the travellers are receptive for advice (blue), which equals the expected acceptance 

rate. Figure 40 reveals that acceptance rate uncertainty provides opportunities for social routing 

since incidental longer travel times are accepted. For example, with 𝜀 = 6, in scenario 𝜔1 travel times 

on all used routes are equal, while in 𝜔2 the travel time on routes 1 and 2 are 82.42, while route 3 

has a travel time of 74.42. That is, the expected detour is 6, but an incidental detour of 8 is accepted.  
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Figure 40: Acceptance rate uncertainty for social routing 

Social rerouting persuades some travellers to choose routes for the benefit of the system. In the 

multimodal setting of D3.2, the social rerouting framework is applied and tested in the public transport 

network of Twente, illustrating that 25% of the maximum improvement in efficiency can be obtained 

with 20% of travellers willing to act socially.  We considered a stochastic extension of this model, 

assuming the portion of travellers willing to act socially is random following an exogenous empirical 

discrete distribution. This leads to additional challenges since travel times depend on route flows, 

and thus also become random. Consequently, travel advice should be adopted accordingly, 

illustrated to provide opportunities to reach policy objectives, e.g. since incidental longer routes may 

be accepted as long as one is compensated by suggesting faster or even individually optimal routes 

in other cases.  

3.3 Prediction Models for Demand Responsive Transport 

As part of the framework for demand responsive transport a forecasting model is required that can 

predict future demand for shuttle transport between network of GoOpti partners on routes Slovenia 

– Italy, Slovenia – Croatia, and Slovenia – Austria. The idea is to provide the “observability” of 

demand prediction to feed the optimisation algorithms for traffic routing and fleet operation. This 

forecasting component should be able to predict the number of passengers on a given route at a 

given time in hourly resolution up to one year into the future. Final specifications are, therefore, 

aligned with the ones detailed in D3.2: 

• Predictions are limited to passengers’ that have a drop-off during specific time slots at 

designated locations (defined by predetermined routes explained above).  

• The pickup or drop-off needs to be considered as originating from the city if the actual location 

is located within 30 km of the city centre.  

• The predictions need to be made for both directions of the route.  

• The prediction resolution will be predefined (1 hour or more).  

• Data that can be used for training and testing of the models is limited to GoOpti’s own 

historical data in potential combination with weather, flight, and traffic information.  

• Two types of predictions are expected, short term up to 14 days and long term up to 1 year. 

There are only two deviations from these specifications from D3.2. The first is that we found there is 

no need for two separate forecasting models (short-term and long-term) since the results presented 
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in this section show that a single model can sufficiently capture both of those cases in a holistic 

manner. The second deviation is the addition of: 

• Predictions should include information about its accuracy such as estimation of confidence 

intervals or quantiles. 

3.3.1 Model Architecture 

Based on the specifications and through coordination between JSI and the Use Case leader GoOpti 

we agreed that the demand forecasting model should estimate five different quantiles (q=0.05, 0.25, 

0.5, 0.75, 0.95) for each prediction of the number of passengers. This means that a rudimentary 

distribution of the expected number of passengers is available for the use in the optimization 

algorithms for traffic routing and fleet operation. The model, therefore, returns five count estimations 

(5th percentile, first quartile, median, third quartile, and 95th percentile) based on the available 

features. After comprehensive data analysis and initial modelling, we identified that the most relevant 

input features are time features for the time of departure and the time of purchase, as well as their 

difference. These time features include time of the day, time of the week, time of the year and the 

linear time. Another set of features are the already known number of passengers (reservations made 

before the purchase time) for time buckets adjacent to the departure time. We found 9 adjacent 

(hourly) buckets to hold sufficient information about the current state of reservations for a given 

departure time. 

There are some features that were not used in our pipeline. After further considerations we 

recognized that the weather and the traffic information is very unlikely to be relevant because the 

current data base, to a very large degree, contains orders related to airport transfers. These orders 

are made several days ahead of departure time and do not relate to traffic and weather conditions 

in Slovenia but rather (possibly) to conditions at the flight destinations. On the other hand, flight 

information should be quite relevant for such modelling, however, we were unable to obtain such 

flight data that would span from 2014 to today due to high financial costs. In this way the model 

needs to uncover the relevant flight information from other features. Given the large size of order 

data made available by GoOpti it is reasonable to expect that, to some degree, the flight schedule 

could be extracted by the model solely from the distribution of order departure times. But this is only 

the case if flights are fairly regular (e.g., periodic) and this is an assumption that we needed to accept 

due to flight data being unavailable. 

We tested several different types of model architectures and forecasting schemes. For example, a 

model can be specialized for a single route (e.g., Ljubljana – ZAG) or it can take this route information 

(origin and destination) as input features. Likewise, a model can be specialized to predict for one 

single forecasting horizon (e.g., for 53 hours into the future), span of forecasting horizons (e.g., 14-

21 days into the future), can take forecasting horizon as an input feature, or it can return predictions 

for the entire year in a single sweep. We found that a single holistic model works best. This means 

that the model takes route information as input features (together with other features) and returns 

(five different quantiles worth of) predictions for the entire year into the future. We found several 

reasons that contribute the choice of this type of architecture. Training many models compared to a 

single one requires more computational resources meaning less intensive optimization. With many 

models we also have a smaller amount of training data points per model since the full data set is 

split to many specialized cases. We found that overfitting can, therefore, be more pronounced with 

many models compared to a single one. This means that more care needs to be taken when training 

many models. Another reason is that with a single model we are able to take advantage of the 

knowledge transfer between all the special cases since patterns that are beneficial for one special 

task can also be beneficial for others which should make training less complicated. 
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Based on these observations we converged toward an architecture depicted in Figure 41. Because 

of a very large training data set (amounting to several 100 GB in expanded form) we opted to move 

feature generation into the model as much as possible as opposed to it being precomputed. By this 

we were able to reduce the training data size to such a degree that it is able to reside in the RAM 

which results to much faster training. We achieved this by saving purchase and departure times as 

integers (current_time_index) and use an embedding layer to attain all time features in a 

computationally efficient way. Route information was also encoded using integers (origin_index and 

destination_index) which were passed to an embedding layer that returned a continuous 

representation of the route information. Data about currently known orders were supplied in node 

current_counts and a convolutional layer was used to efficiently access adjacent values meaning 

that we did not need to save several copies of a slightly shifted time series of currently known number 

of passengers. Time difference between departure and purchase time is generated in node 

subtract_26 and normalized. All these features are then concatenated and supplied to a 

computational block composed of several dense layers with dropout. The output of the model is 

composed of three components. The first is the most important, estimation of positions of five 

quantiles for the number of passengers (quantile), while the other two were found to be beneficial 

for training. Because the data includes large proportion of time buckets without any passengers, we 

found that estimating the probability that at least one passenger is in a time bucket (classification), 

in addition to the actual count, helps the model to more efficiently learn when the counts should be 

exactly zero. The last output of the model (current_count) estimates the currently known number of 

passengers. This helps the model to not lose too much information about the currently known 

number of passengers that can happen when information flows through several layers of 

computation. These two additions accelerated the model training and improved its accuracy by about 

5%. 
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Figure 41: Model architecture. 

3.3.2 Model Training and Hyperparameter Optimization  

To train the model we require a metric that quantifies to what degree the output of our model is 

misaligned compared to ideal outputs in our data base. This quantity, called error, is minimised 

during training using optimisation. For current_count we used mean absolute error, for classification 

we used binary cross-entropy, and for quantile we used sum of five pinball loss functions, one for 

each quantile estimation. The training was performed using gradient descent algorithm (Adam and 

RMSProp). Dropout and early stopping were used to prevent overfitting. A characteristic number of 

epochs performed during training was around 10.  

The loose architecture depicted in Figure 41 still has many tuneable hyperparameters whose values 

can significantly affect the accuracy of the model. To explore the impact of this we performed a 

hyperparameter optimisation by minimising validation error of the model using grid search. We 
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considered several combinations of hyperparameters including widths and depth of the dense block 

of the model, training algorithm, intensity of dropout, and the size of positional encoding. Figure 42 

depicts how the validation error changes with respect to different hyperparameter values. The 

winning model architecture is depicted in Figure 42. 

 

Figure 42: Final model architecture with tunable hyperparameters. 

3.3.3 Validation 

The accuracy of the model was validated on a test data set comprising of orders between 1st of 

January 2024 and 31st of December 2024, while the model was trained on data from 1st of May 2014 

to 31st of December 2023. Two examples of predictions with our model are shown in Figure 43. For 

shorter forecasting horizons (e.g., up to 1 month into the future) our model predictions are very well 

aligned with the true number of passengers. Also, the estimations of quantiles are not spread far 

from the real values indicating that the model is quite confident that its prediction is close to the 

actual value. For larger forecasting horizons (e.g., 3 months into the future or longer) we see that 

the model is less certain about its predictions and the prediction is much smoother compared to the 

actual values. We attribute this to the fact that the model has much less information since there are 

not as many reservations known yet for so far away into the future. So, the model is unsure about in 

which specific hours the spikes in demand will appear, unlike in the case of shorter-term predictions 

where some known orders already allow the model to gauge positions of these spikes in demand. 
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Figure 43: Examples of prediction results. 

This means that the model’s accuracy decreases with forecasting horizon. To further analyse this 

phenomenon, we require metrics to assess the model’s accuracy. The first metric we use is mean 

absolute error (MAE) which measures the difference between median estimation of our model 

(q=0.5) and real number of passengers in a given time bucket. The second metric is mean absolute 

percentage error (MAPE). Because large proportion of time buckets in our data has zero number of 

passengers, we used a smoothened version of MAPE in order to avoid dividing with zero. For a 

smoothing time scale, we used 1 week. This means that MAPE is calculated by finding MAE in the 

time span of 1 week and dividing this value with total number of passengers in that week. This metric 

gives a different perspective of the model error compared to MAE because there are seasonal 

variations and trends in the number of passengers through time. MAE is, therefore, more appropriate 

for measuring accuracy on larger time scales while MAPE can also be used on smaller time scales. 

Since our model is the first system for forecasting demand in this scope and for this data, we will 

compare it to a baseline model that is simply a mean value of passengers in a time bucket. Figure 

44 and Figure 45 report how our metrics depend on forecasting horizon for different routes and time 

bucket resolutions. We see that MAE of our model is substantially smaller than the MAE of the 

baseline until we get to forecasting horizons of approximately 1 month. With MAPE we see a similar 

picture, however, due to smaller averaging windows we see more variance in the results. But we can 

see that, for large forecasting horizons, MAPE for a model with 1h resolution is somewhere between 

90% and 100% error while the model with 3h resolution is systematically better with error between 

60% and 90%. This means that finer time resolution is more appropriate for short-term forecasting 

while a coarser time resolution works better for long-term forecasting. 
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Figure 44: Mean Absolute Error (MAE) of our model compared to the baseline model for the three 

routes and three different forecasting horizons. 
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Figure 45: Mean Absolute Percentage Error (MAPE) of our model with respect to the forecasting 

horizon for three different routes and two different time resolutions. 

Up to now, our analysis cantered around median prediction of our model (q=0.5). For other quantile 

estimation we could use pinball loss function to assess the accuracy of our model, however, we do 

not have any reference to compare those values with. But we can make a statistical analysis to see 

if, on average, the frequency of the real number of passengers being between the estimated 

positions of quantiles is close to the expected frequency. Figure 46 depicts the results of this 

analysis. We can see that the distributions do not align completely with the ideal case. But 

nonetheless our model seems to capture the real distribution of the data to a reasonable degree with 

the exception of slight skewness to the small values in case of the 3h resolution model and to the 

larger values in case of the 1h resolution model. This effect is probably due to quite complicated data 

distribution, with many zeros and occasional outliers with very high values. Given that the quantile 

regression with pinball loss, used here, was intended for normally distributed variates and we have 

count variates (nonnegative with outliers), these results are satisfactory. 

 

Figure 46: Statistical analysis for how often the real number of passengers falls within the bins 

determined by the quantiles predicted by our model. 
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3.3.4 Integration of the Prediction Model 

Our model is currently a part of FastAPI web service which operates on JSI servers and is used by 

other Use Case partners to acquire predictions. The prediction is evoked by sending a query to the 

web service which contains a specification for the prediction (such as time resolution, forecasting 

horizon, and so on) in a JSON format. The web service than returns, also in a JSON format, a 

forecast for the specified route and time range for each of the desired quantiles. This service is used 

only for inference (making predictions) using an already trained model that was specifically fine-

tuned for GoOpti Use Case and using GoOpti data. Because our model uses real-time features, such 

as the currently known number of passengers, the service regularly connects to the GoOpti data 

base to obtain this up-to-date data. For this reason, the web service requires an authentication (using 

username and password) because the model predictions could be used to partially reconstruct data 

from proprietary GoOpti data base. 

Even though our web service was specifically designed for GoOpti Use Case its architecture can 

also be used for other related Use Cases. This would entail including a new trained model into our 

service, linking the service to a new data base containing features relevant for that Use Case, and 

creating a new user that is allowed access to such predictions. The structure of the prediction query 

for a different Use Case would also most likely differ from the one that applies in the GoOpti Use 

Case, possibly including other specifications for conditions under which the forecast is performed 

(such as the way origin and destination is specified geometrically, irregular ways to specify time 

spans of the forecast, other quantile values not considered in the GoOpti Use Case, and so on). On 

the model training side, for other Use Cases, it is also reasonable to expect that the optimal model 

architecture and feature relevance would not fully align with the GoOpti Use Case. This means that 

feature extraction and model fine-tuning procedures would need to be repeated in order to train a 

model of sufficient accuracy. Nonetheless, these methods were fully developed in the scope of this 

project and could be translated to related traffic and demand forecasting use cases. 
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4. DYNAMIC OPTIMIZATION 

4.1 Optimisation of urban freight distribution with the DRT service for 
last-mile delivery 

In deliverable D3.2, various studies were presented that facilitate the integration of urban freight 

distribution with the DRT service for last-mile delivery. Optimisation techniques based on 

metaheuristics have been designed and implemented to effectively solve the resulting model, 

ensuring both efficiency and effectiveness in the solutions obtained. These algorithms consist of 

hybrid metaheuristic strategies derived from operators included in JSprit, the framework used for 

developing both the mathematical model and the associated solution algorithms. 

4.1.1 Architecture of the Proposed Solution 

The solution considers flexibility in handling the physical characteristics of the problem to be solved: 

different types of vehicles and capacities, access restrictions, time windows, integration of people 

and parcels, optimization of multiple objectives, etc. On the other hand, the solution is horizontal and 

scalable, exposed as a service layer that interacts with the optimizer components and provides 

results asynchronously via an API. Figure 47 shows the different main components that we have 

accounted for in the development of the proposed module. 

 

 

Figure 47: Main components of the solution 

The conducted tests have shown that the size of the input data is too large for the optimizer to 

allocate tasks within a timeframe that meets the actual needs of the system. Therefore, it has been 

decided to implement a pre-optimizer that will facilitate the optimiser's work by clustering the tasks. 

This process involves dividing the data into smaller instances that can be efficiently managed by the 

optimizer, ultimately consolidating all outputs into a single result. 
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Figure 48: Architecture of the solution 

Figure 48 illustrates the final architecture that has been implemented for this component. Requests 

are made to an API that interfaces with the pre-optimizer, which, based on the input requirements, 

will cluster and distribute the workload across multiple jobs running in parallel on different optimizer 

instances. Once the results are obtained, they are consolidated and returned in a single output.json 

file. This file, along with its validation conducted on Aimsun's premises simulating the scenario, will 

constitute the final result of the execution. 

4.1.1.1 Pre-Optimizer 

The pre-optimizer is a software tool developed in Python that acts as a bridge between the input 

data and the optimizer. Its primary function is to clean and process the data, if necessary, and to 

ensure that the input size is manageable by a single instance of the optimizer. If the input exceeds 

this capacity, the pre-optimizer will cluster the tasks, dividing them into smaller groups that can be 

handled by parallel instances of the optimizer. Given that the optimization problem exhibits 

exponential growth based on the size of the tasks to be optimized, breaking them down into smaller 

tasks allows for simultaneous execution, thereby ensuring that the overall execution time of the 

problem remains reasonable. Subsequently, the pre-optimizer will process the outputs from each 

instance of the optimizer and consolidate them into a single file, which will serve as the final output 

of the system and will be sent to Aimsun for simulations. 

4.1.1.2 Meeting points 

To improve the efficiency of the DRT, strategic meeting points have been defined that allow us to 

pick up and drop off people at the predefined points instead of doing door-to-door trips, therefore 

offering a balance between user convenience and operational efficiency. In this way, people in low-

density population areas will have access to the service, and logistics operators will be able to 

organise their itineraries more efficiently and optimise the number of vehicles and drivers used to 

provide the transport service. 

For their identification, bus stops were considered, as well as the intersections of main roads with 

secondary roads, secondary roads with secondary roads, secondary roads with tertiary roads, 

secondary roads with residential roads, and tertiary roads with residential roads. 
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Their identification streamlined the clustering process by reducing the number of geographic 

locations compared to the original individual sites. 

4.1.1.3 Clustering 

Since the problem involves tasks related to the distribution of both orders and people, and 

considering that people require pickups and drop-offs at dispersed points, clustering cannot be 

performed solely based on delivery points. This complexity necessitates the use of trajectories, 

defined as the vector connecting the origin (pickup point) to the destination of each task. Additionally, 

it is important to take into account specific time windows, as there may be trajectories that are close 

in space but far apart in time. For instance, two tasks may share a physical trajectory, but one must 

be completed in the morning while the other is scheduled for the afternoon, making it impossible to 

optimize a single trip. 

 

To deal with the above and the high number of requests for parcel delivery and people pick-up and 

drop-off, a clustering model has been designed that considers the distance, direction, and time 

properties of the trajectories. Together with the pre-optimizer, this ensures that the data size is 

manageable for the optimizer, thus improving its efficiency. 

For this, we generate spatial, directional and temporal distance matrices. The spatial distance matrix 

(distMatrix) represents the difference in geographic distance between two trajectory vectors. The 

directional distance matrix (directMatrix) considers the directional movements between two vectors. 

The temporal distance matrix (timeMatrix) represents the difference between the pick-up and 

delivery time intervals. Finally, these matrices are combined into a final distance matrix: 

 

totalDistMatrix = w1*distMatrix + w2*directMatrix + w3*timeMatrix 

 

Where w1, w2 and w3 are the weights of the distance, direction and time matrices respectively, and 

add up to 1 in total (w1=0.3, w2 = 0.35 and w3= 0.35). 

 

The clustering algorithm used was agglomerative hierarchical clustering which works with distance 

matrices. It is also worth mentioning that to optimize the calculation of the matrices and clustering, 

we used the Just Another XLA3 (JAX) library. 

In Figure 49, 11 clusters can be observed, generated from a sample of 100 trajectories of people 

and packages, considering their direction, distance, and time interval. CC1, CC2, and CC3 

represent the package consolidation centres, provided by NOMMON in the Scenario 1 dataset. 

The circle indicates the starting point of a trajectory, while the X represents its endpoint. 

 

 

 

3 Accelerated Linear Algebra 
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Figure 49: Example of cluster results from a sample of 100 trajectories 

4.1.1.4 Optimizer 

The Large Neighbourhood Search (LNS) algorithm has been implemented in the proposed solution. 

It is a metaheuristic where the neighbourhood of a solution is implicitly defined by destroy and repair 

operators. A destroy operator removes part of the current solution, while a repair operator rebuilds 

the removed portion. Typically, the destroy method includes some degree of randomness to modify 

different parts of the current solution, thereby exploring the search space more effectively. 

 

LNS employs a broader neighbourhood exploration technique compared to other classical local 

search metaheuristic algorithms. It combines different destruction and reconstruction operators (ruin 

and recreate) along with strategies for accepting or rejecting solutions, making it a hybrid 

metaheuristic. 

 

The optimization procedure used in this module follows a stochastic approach based on ruin and 

recreation (R&R) and can be summarized as follows: 

1. Initialization: Start with an initial feasible configuration. 

2. Selection of ruin and recreation mode: Choose a technique to destroy part of the 

neighbourhood configuration and another technique to reconstruct it. 

3. Determine the number of nodes to be removed. 
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4. Execute Ruin & Recreate: Generate a new solution configuration using the heuristics 

selected in step 2. 

5. Acceptance criterion: Decide whether to accept the new solution based on a decision rule 

(e.g., Simulated Annealing, Threshold Accepting, etc.). If the solution is accepted, proceed 

from step 2 using the new solution; otherwise, restart from step 2 with the previous solution. 

4.1.2 Optimization of Freight Deliveries in DRT using Soft Time Windows in 
FleetPy 

This section details the main optimization model used by FleetPy for fleet management. It also 

describes the optimization approach developed for the integration of logistics into DRT services. The 

combined services and the developed method will be investigated further for the city of Madrid UC3. 

The description in this section is based on the optimization model described in D3.2 including further 

developments since its submission. 

The overall fleet management problem in DRT services falls under the category of Stochastic and 

Dynamic Vehicle Routing Problem (SDVRP). FleetPy uses a dynamic simulation environment, 

where the ride requests are revealed over time. It uses two types of control algorithms for assigning 

vehicles to requests. The first type includes quick response algorithms that respond to the requests 

as soon as they are revealed to the system. The second type accumulates the requests for a brief 

period and formulates an optimization problem for assigning vehicles to ride requests. The latter 

category is known as batch optimization. 

FleetPy represents the street network as a directed graph 𝐺𝑜𝑝 = (𝑁𝑜𝑝 , 𝐸𝑜𝑝) with nodes 𝑁𝑜𝑝 and edges 

𝐸𝑜𝑝. Each edge 𝑒 ∈ 𝐸𝑜𝑝 is associated with a distance 𝑑𝑒 and a travel time τ𝑒(𝑡). In CONDUCTOR, 

the street network and the travel times on edges τ𝑒(𝑡) are derived from the macroscopic simulation 

of Aimsun Next. In D2.1, the edge travel times were described to be derived in real time Aimsun-

FleetPy bridge and Aimsun Next’s microscopic simulation. However, in the final implementation of 

the method, macroscopic simulation in Aimsun Next is used instead of a microscopic model in order 

to satisfy the requirements of UC1 Madrid, as described in D2.5. 

As shown Figure 50, FleetPy conducts the following major steps in each simulation loop: 

1. Boarding and alighting of passengers as well as pick up or drop off events of freight requests 

are registered by the fleet operator. 

2. New DRT customers enter the simulation and request a trip 𝑖 at the time 𝑡𝑖  by providing origin 

𝑜𝑖 ∈ 𝑁𝑜𝑝 and destination 𝑑𝑖 ∈ 𝑁𝑜𝑝, and must be picked up with a maximum pickup delay of 

𝑤𝑚𝑎𝑥 starting from 𝑡𝑖 , otherwise the customer does not take the trip and leaves the system. 

3. The operator evaluates whether it can serve the request within the given time constraints. If 

so, an expected pick-up time 𝑡𝑖
𝑝𝑢

 and drop-off time 𝑡𝑖
𝑑𝑜 is provided. 

4. Operators accommodate a subset of freight requests into vehicle schedules. The soft time 

windows assigned to the freight requests are also used for this purpose. 

5. If the freight request cannot be served within the assigned soft time widow, the time window 

is extended, and the parcel receiver is notified of the modified delivery time window.  

6. The operator assigns new/updated schedules to its vehicles. 

 

In order to assign customers to vehicles, FleetPy first builds a pool of schedules. A schedule is 
defined as a series of stops at network nodes 𝑁𝑜𝑝 where boarding and alighting processes of vehicles 

are conducted. In between these stops, vehicles are travelling on the fastest route in the network 
𝐺𝑜𝑝. There are multiple possible permutations of stops as soon as more than one passenger is 

assigned to a vehicle 𝑣 ∈  𝑉, which are further increased when freight requests are also considered. 
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The 𝑘-th possible permutation of stops for the schedule 𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓) serving all passengers and 

freight requests in the set 𝑅𝜓 and 𝑃ψ, respectively, is considered feasible if all the following conditions 

are satisfied: 

1. the drop-off stop succeeds the pick-up stop for each customer.  

2. the number of on-board customers never exceeds the vehicle capacity (𝑐𝑣).  

3. each customer is (supposed to be) picked up before a maximum waiting time 𝑤𝑚𝑎𝑥 elapsed. 

4. if the operator offers a pooling service, the maximum additional travel time must not exceed 

a detour factor 𝛿𝑚𝑎𝑥 compared to a direct trip. 

As described in deliverable D2.1 and D2.5, FleetPy considers three levels of logistic integration: 

status quo (freight and passengers served by separate fleet), moderate (both served by same fleet, 

however, no parcel can be collected or delivered in between a passenger trip) and full (a freight 

request can also be collected or delivered in-between passenger trips). For a moderate integration 

to be considered, the optimization problem additionally uses the following constraint: 

5. while passengers are in the vehicle, no stop is allowed where only parcels are picked up or 

dropped off. 

Schedules are rated by an objective function 𝜙(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓)). The goal of the fleet operator is to 

assign schedules minimizing the aggregated objective function for all its vehicles. 𝜙(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓)) 

can be modelled in multiple ways. Since the submissions of D3.2, TUM modified the objective 

function to also include freight delivery time windows: 

𝜙(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓))  =  𝑑(𝜓𝑘(𝑣; 𝑅𝜓, 𝑃𝜓)  −  𝑃 |𝑅𝜓| − 𝑓(𝑃, 𝑇𝑃𝜓
) |𝑃𝜓|) (3) 

where 𝑑(𝜓𝑘(𝑣; 𝑅𝜓 , 𝑃𝜓) refers to the distance to drive to complete the schedule. 𝑃 is a large 

assignment reward to prioritize serving customers and parcels over minimizing the driven distance. 

However, while 𝑃 is fixed for customers, the reward for freight request is a function 

𝑓(𝑃, 𝑇𝑃𝜓
),dependent on 𝑃 and the difference between start of assigned time window and the actual 

delivery times, given by the set 𝑇𝑃𝜓
.  

To solve the above optimization problem for combined logistic and DRT service, FleetPy uses 

heuristic approaches to build a set of schedules that include freight requests. The fundamental 

concept of the heuristic is to only insert freight requests into vehicle schedules if the detour to pick 

up or drop off a freight request is small or if delivery of the freight request is urgent due to the 

assigned delivery time window.  
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Figure 50: Main Simulation Loop of FleetPy 

4.1.3 Preprocessing for Initial Delivery Time Assignment to Freight 
Requests 

As mentioned in D3.2 and D2.5, within CONDUCTOR, TUM investigated the mechanism for 

providing estimated delivery time windows to the freight requests. This replicates a similar strategy 

to the current freight services where the delivery of freight requests is given a rough delivery time-

windows ranging in hours. However, in a combined DRT service for passengers and freight, the 

complexity of assigning time windows to freight requests is significantly higher than dedicated freight 

services. The fundamental challenge is the significantly different nature of freight and passengers 

requests. The passenger requests are added dynamically into the system and must be picked up 

within 𝑤𝑚𝑎𝑥. This requires the fleet with sufficient empty seats to be close to the potential customer 

locations for higher service quality. In contrast, all freight requests are known beforehand at the start 

of the day and do not have strict time constraints for delivery. Thus, adjusting the freight requests 

into DRT schedules with dynamic DRT customers raises the problem complexity. 

In the estimated delivery time window strategy, all freight requests are first assigned initial delivery 

time windows (in hours) in a preprocessing step. These time windows are used as soft time 

constraints while assigning freight requests to DRT fleet. The motivation here is that using these 

initial delivery times, the freight receiver will get a notification of the parcel arrival time, making it 

easier for the receiver to be available at the time of delivery. Later, according to DRT availability, if 

some freight requests cannot be served within the assigned time window, the time windows are 

slightly modified and the freight receiver is accordingly informed of the changes. Thus, the more 

accurate the initial time window assignments are, the less changes to the delivery time windows 

would be required during the actual DRT operation. Therefore, the preprocessing method for initial 

time window assignments play a crucial role for higher service quality of freight requests. 

Looking at their importance, TUM investigates two methods for initial delivery time windows. Both 

methods use spatio-temporal aspects for this purpose. First, the freight and DRT customers are 

divided into regions according to their origin and destinations. For simplicity, the city districts are 

used for this purpose. Then, two different approaches are used: 

1) Region-Based Equal Delivery Time Windows: In this method only the freight requests are 

used. Within each region, the number of freight requests are counted. Later, within the 

working hours, all freight requests are assigned a time window of 2 hours, such that, for each 

region, the number of freight deliveries for each 2 hour time window is equal. The downside 

of this strategy is that it does not consider the DRT customer demand. Thus, there are higher 
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chances that such a strategy may not be able to meet the initially assigned travel time 

window. 

2) DRT Demand based Delivery Time Windows: Since the freight requests are served while 

also serving the DRT passengers, considering the forecast of DRT passengers may serve 

as an important factor for the assignment of delivery time windows. Thus, in this method, 

first the number of DRT passengers are counted for each combination of region and 2 hour 

time windows during the working hours. Later, the freight requests in each region are 

assigned 2 hour time windows such that the ratio of freight requests in each region and 2 

hour time window is the same as the DRT requests. The motivation here is that the vehicles 

would be readily available in these regions due to DRT passengers, and thus, there is a 

higher chance that the initially assigned delivery time windows are fulfilled. 

4.2 Risk-based Adaptive Routing in Public Transport 

4.2.1 Introduction 

Even though public transport (PT) operations are planned meticulously, things may play out very 

differently in practice. Disruptions and disturbances range from minor increases in dwell times due 

to an unexpected high boarding rate to vehicles breaking down. Such perturbations or events can 

manifest or propagate in the realized PT schedule, leading to delays which may affect passengers 

in many ways, e.g. by missed transfers and late arrivals. Consequently, uncertainty plays a critical 

role in passengers’ decisions regarding their route and departure time.  

Since uncertainty is only revealed over time, passengers need to hedge against it when making 

decisions. Yet, they oftentimes have the opportunity to respond to changing information by 

postponing some of their decisions or adjusting their initial decisions over time. As such, passenger 

decisions are not fixed a priori but depend on what is happening in the network and the available 

information, cf. (Hall, 1986). 

When making decisions, travellers are not only concerned with expected or scheduled travel and 

arrival times but also assess and anticipate potential deviations. They desire a trip that is reliable, 

i.e. one for which the arrival or travel time is consistent with what was communicated. In fact, 

travellers are in general strongly averse to scheduling mismatches (Small et al., 1999) and 

commuters especially consider travel time reliability to be one of the two most important factors for 

route choice (Abdel-Aty et al., 1995). Consequently, risk-averseness in the face of the uncertainty 

needs to be captured when modelling passenger decision making in order to accurately estimate or 

predict passenger flows. 

In assignment studies, passenger decision-making is typically modelled as a one-shot deterministic 

optimization problem, which in this setting relates to having full information, and selecting a priori a 

departure time and route with minimum cost (or maximum utility). Such an approach does not suffice 

when trying to capture the complexity of passenger decisions under limited and evolving information. 

First, the deterministic approach does not account for the possibly infinite supply scenarios that may 

occur. Second, in PT, it is inevitable for passengers to make recourse decisions in response to new 

information that becomes available during the trip, because they either have to (e.g. if they missed 

a transfer) or they want to. Although stochastic, multi-stage extensions exist, most studies assume 

decision-makers to be risk-neutral (Gao & Chabini, 2006), include an objective function that captures 

non-constancy in travel times but not necessarily the potential impact, or focus on (car) traffic 

networks where travel time uncertainties typically only impact costs, but not the available routes 

(Gao et al., 2010). 
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In this paper, we propose a novel framework for modelling passenger route choice under uncertainty, 

which both captures the adaptive nature of passenger decisions in PT systems and includes risk as 

a relevant factor for decision-making. Rather than considering a single study-specific reliability 

metric, we integrate general risk measures into a stochastic route choice and departure time 

problem, where passengers make and adapt decisions based on a summary and quantification of 

the uncertainty in PT travel times. 

4.2.2 Route Choice under Uncertainty and Risk 

Transportation networks are by their very nature uncertain, hence travel times cannot be predicted 

with total accuracy in advance. This holds true both for traffic networks and PT systems and requires 

travellers to come up with more elaborate routing strategies than what is modelled by the classical 

deterministic shortest path problem. Instead of fixing a path in the beginning, which is followed 

through regardless of the situation, it is typically assumed that travellers adapt their route along the 

way depending on the realization of the network and updated information about the past, current and 

future situation. An approach to model this is in a stochastic time-dependent (STD) network, where 

the travel time distributions of the links might change over time. Considering adaptive decision-

making, Optimal Routing Problem (ORP) in an STD network was first studied by (Hall, 1986), which 

showed that in such a network this was indeed more effective than simple paths. Similar problems 

and their solution approaches have been studied, including e.g. dynamic programming approaches 

as well as various algorithms and heuristics (Chabini, 1999; Gao et al., 2010; Gao & Chabini, 2006; 

Miller-Hooks, 2001; Miller-Hooks & Mahmassani, 2000). 

However, these studies usually solely focus on traffic networks. Even though these considerations 

are also clearly relevant for the PT setting, the uncertainty in PT networks is oftentimes more difficult 

to model. When one is traveling in a traffic network, in most cases travel time is the only uncertainty 

of importance for route choice. Even though incidents, congestion or construction might occur and 

influence the trip duration, the probability that they cause failure or non-existence of a route is usually 

negligible. This is not the case for PT. Here, a link to travel on is not a street, which is always available 

regardless of the time and circumstances. Instead, a link is a trip (e.g. by bus or train) between two 

stations offered by the PT system operator. This service operates at a schedule and thus is only 

available at certain times (which might also vary due to the circumstances in the network), or which 

might even be cancelled and thus not exist at all. Routing in stochastic networks in which the 

existence of links is random has been studied e.g. by (Andreatta & Romeo, 1988; Croucher, 1978). 

However, their focus lied solely on the uncertain existence of links, while travel times were 

deterministic. Thus, there is a need to study stochastic networks which model both: the uncertainty 

of travel times as well as the uncertainty of the existence of the routes in general. 

Regardless of the design of the underlying stochastic network, all approaches on routing under 

uncertainty from above agree that the route choice decision is based on the total travel time of the 

trip. The optimal route is determined by minimizing the expected travel time and it may be adapted 

by recourse decisions along the way. However, passengers are actually highly concerned with the 

uncertainty of travel times as they often cause missed transfer and cancelled trips in PT networks. 

In fact, there are various ways for passengers to evaluate and deal with the variability of travel times 

in PT, (travel time) reliability being one of the most commonly studied approaches in transport 

studies. It relates to the evaluation of travel time variations according to the preferences and 

interpretations of the different participants in traffic and PT. The formal definition is usually dependent 

on the respective setting, reflected by the numerous reliability measures, cf. (Zang et al., 2022). 

Many of the proposed metrics are easy to compute and have an intuitive interpretation, with travel 

time standard deviation (or variance) (Carrion-Madera & Levinson, 2010; Frittelli & Maggis, 2011) 

probably the most well-known. A major drawback of these metrics is that many measure non-
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constancy, but not necessarily impact. The consequences resulting from a deviation are often not 

accounted for: even a very reliable trip might be extremely late on occasion, or might even be always 

late for that matter, and hence it might be considered a risky trip anyhow. Thus, reliability may not 

adequately describe passenger's risk preferences entirely if they neglect the `value of unreliability' 

(Watling, 2006). Indeed, the risk of deviating from the initially planned route due to travel time 

variations has a direct impact on how passengers make decisions regarding their routes and 

departure times, as they adapt these specifically for trips that are considered unreliable, cf. (Small, 

1982; Tirachini et al., 2014).  

In this study, we argue that risk rather than reliability should be adopted as metric to aggregate and 

quantify both the likelihood and consequences of travel time variations and could be consequently 

adopted as an objective function in a passenger path choice model. The concept of risk stems from 

finance, where the risk of a financial position like a stock or asset is quantified by functions, the so-

called risk measures (Föllmer & Schied, 2016). Here, risk is oftentimes interpreted as the amount of 

cash one should hold to be safe of possible future monetary losses and is used to make investment 

decisions, but also to prevent bankruptcy of firms. An axiomatic approach was developed by (Artzner 

et al., 1999) to assess the ability of a risk measure to reflect the characteristics of real-life financial 

applications and differing risk attitudes of multiple involved parties, allowing for a wide-spread 

interest in and use of risk measures both within and outside the financial applications (Egidio dos 

Reis et al., 2009; Filippi et al., 2020; Insurance, 2006; Szegö, 2002). Previous risk analyses in a PT 

context usually focused on evaluating random travel times. Similar to the approaches on reliability, 

risk is typically assessed by being compared to a reference, which  in PT is usually the timetable, 

prompting the idea of the risk of not being on-time, missing a transfer or a trip generally not going as 

planned. Previous studies include two prominent examples of monetary risk measures (Chen & 

Zhou, 2010): The Value at Risk (V@R) and especially the Conditional Value at Risk (CV@R) 

acknowledge the often heavily right-tailed probability distribution of travel times and delays (Philippe, 

2006; Rockafellar & Uryasev, 2000). This is also in line with the risk aversion towards delays which 

is congruent with the economical concepts described in Cumulative Prospect Theory (Kahneman & 

Tversky, 1979) and has been adopted in risk-based routing decisions before (Gao et al., 2010). To 

allow for different risk behaviour, a risk acceptance parameter can be set accordingly. 

Inspired by travel time reliability and the risk theory from financial mathematics, we develop a risk 

theory that fits into the stochastic decision-making process regarding route and departure choice of 

passengers in PT. By covering existing examples of risk measure like V@R and CV@R, but also 

e.g. penalties for early- and late-arrival, this extends existing approaches by accounting for the 

heterogeneity of risk attitudes within the population. 

4.2.2.1 Problem Illustration 

This research studies adaptive routing under uncertainty in PT and how risk can be included into 

these considerations. There are three aspects we aim to address specifically: 

1. Define a model for adaptive routing of passengers in a stochastic network, accounting 

for the uncertainty of both travel times and the existence of the routes in general. 

2. Define the risk of a route as a metric to assess the impact of uncertain realizations of 

timetables. 

3. Use the route/departure choice model to analyse different risk operator in terms of 

their suitability to reflect passenger preferences. 

As neither of these points is trivial, we first want to illustrate the difficulties arising with these topics. 

For this, we introduce a simple example. 
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Consider a PT passenger, traveling from station 𝑠0 to 𝑠2. The timetable, illustrated in the space-time 

graph in Figure 51, provides three possible routes 𝑅 = {𝑟1,  𝑟2 ,  𝑟3}. The first route 𝑟1 (orange) is direct 

but also stops at 𝑠1. Alternatively, passengers can leave the orange line at 𝑠1 and transfer into the 

pink one for route 𝑟2. Or one could take the green line and then transfer into the orange line, yielding 

route 𝑟3. While these are simply the scheduled routes according to the timetable, travel times may 

vary in reality and adapting the route may become necessary. The pink line might be so delayed that 

it makes no sense to transfer for 𝑟2. Even worse is the case if the transfer of 𝑟3 is not successful due 

to delays of the green line. Then one is either stuck at 𝑠1 or might get lucky and catch the delayed 

pink line to successfully finish the trip. 

 

Figure 51: Available connections from s0 to s2 as scheduled in the timetable 

So while 𝑅  is the set of paths the timetable suggests to travel from 𝑠0 to 𝑠2, reality might look very 

different from this. In practice, one does not know the actual realization of the timetable, but may 

learn or be informed about the delay distributions. Using an information system, passengers may 

be able and willing to take recourse action at a later time. Hence, choosing a route out of 𝑅  equals 

an initial boarding decision with a path in mind, which is either followed through with or corrected 

according to certain strategies, in case the realization of the path includes e.g. a missed transfer. 

Possible strategies to move through the network are called routing policies, and the ones we will 

consider here are described in Table 7. 

Table 7: Possible routing policies to travel from s0 to s2 in above's PT system 

Policy Name Routing Decisions 

𝜇1 Safe & direct Orange line until  

𝜇2 Safe & quick Orange line to, then transfer into the pink line if it is on-time 
 Alternatively orange line until  

𝜇3 Risky & quick Green line to, then transfer to into orange line if possible 
 If it is not possible, but pink line delayed, transfer into pink line 
 If no transfer possible, finishing trip is not possible 

The question remaining is which of these routing policies to choose from. This choice clearly 

depends on the preferences of the passenger, whether a short travel time, a certain arrival or 

departure time, or a more reliable or less risky one is asked for. In the following, we assume for the 
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sake of our example that passengers are solely averse to travel time variability and its 

consequences. That is, their objective is either to maximize travel time reliability of the route or 

minimize risk. With this focus, we are only interested in the deviation from the scheduled arrival. 

For simplicity, we assume that the actual arrival time of a line can only be equal or later than the 

scheduled one, causing delays. These delays are realized upon arrival at station 𝑠1 and are the 

same on arrival at 𝑠2. The probability distributions of these possible delays 𝐷  (in minutes) for each 

line {𝑜, 𝑔, 𝑝} (orange, green, pink) are 

𝑃(𝐷𝑜 = 0) =  0.95,  𝑃(𝐷𝑔 = 0) =  0.9,   𝑃(𝐷𝑝 = 0) =  0.5, 

𝑃(𝐷𝑜 = 5) =  0.05,  𝑃(𝐷𝑔 = 10) =  0.1,  𝑃(𝐷𝑝 = 30) =  0.5. 

Here,𝐷𝑜 = 0 means the delay of the orange time equals 0, i.e. it is on-time, while 𝐷𝑜 = 5 refers to a 

delay of 5 minutes. 

Based on this, we derive the probability distributions of the delay 𝐷𝑖  of the policies 𝜇𝑖 , 𝑖 = 1,2,3. As 

the originally planned arrival time, we choose the one which corresponds to the realization of a 

policy where nothing goes wrong. Then it is 𝐷1 ∼ 𝐷𝑜, as the policy simply sticks with the orange 

line. A trip following policy 𝜇2 is considered on-time if the transfer from the orange to the pink line is 

chosen, which only happens if both the pink and the orange line are on-time. If one line is however 

delayed, 𝜇2 suggests to stick with the orange line, resulting in a delay of 15 minutes (if pink is 

delayed, but orange is on-time) or 20 minutes (if orange is delayed) as the orange line is scheduled 

to arrive 15 minutes after the pink one. For policy 𝜇3, it is considered on-time, if the transfer from 

the green to the orange line is successful and the orange line is on-time. If the orange line is 

delayed, the transfer is successful both times, for the green line being either on-time or delayed. In 

this case, the delay of 𝜇3 is 5 minutes. If the green line is delayed, but the orange line is on-time, 

there are two possibilities. Either the pink line is also delayed and one transfers into this one, 

resulting in a delay of 15 minutes. If this is not possible, one is stuck at station 𝑠1 and cannot finish 

the trip in time. Based on a periodic timetable of 60 minutes, we denote the delay in this case by 60 

minutes. That is, we result in the following probability distributions of the delays of 𝜇2 and 𝜇3:  

𝑃(𝐷2 = 0) =  0.475,  𝑃(𝐷3 = 0) =  0.855,       (4) 

𝑃(𝐷2 =  15) =  0.475,  𝑃(𝐷3 =  5) =  0.05, 

𝑃(𝐷2 =  20) =  0.05,  𝑃(𝐷3 =  15) =  0.0475,    

𝑃(𝐷3 =  60) =  0.0475. 

As the passenger does not know the realization of the PT system and therefore also does not 

know the delay which awaits them, they have to base their route choice solely on the available 

information before departure. That is, at station 𝑠0 they choose their strategy (and with this their 

initial boarding decision) based on these probability distributions. 

While this notation is sufficient for this simplified example, it lacks a lot of information which is needed 

to model realistic PT systems. In reality, it is necessary to include the passing of time and update 

the available information and probability distributions, especially since there usually are more than 

only one stage where passengers can take recourse action. Real PT systems are also much larger, 

making it necessary to keep track of it in a designated network as well as a more specific timetable. 

While keeping track of the different routes and policies in this example already needs a lot of 

consideration, modelling adaptive routing in larger networks becomes instantly more complex. 
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To find the optimal routing policy in the presented example, the delay distributions of the policies 

need to be evaluated according to the preferences for reliability and risk of a passenger. Reliability 

in PT is often strongly related to punctuality. So we are looking for the connection which is most 

likely on-time, i.e. max  𝑃(𝐷𝑖 = 0) over policies 𝑖 = 1,2,3 . According to this definition, 𝜇1 is 

considered the most reliable, as no delays can occur due to a missed transfer. Then, 𝜇3 is also 

quite reliable and might be a valid alternative if passengers might additionally be looking for a 

shorter travel time. However, the possibility that this journey cannot be completed if the transfer is 

missed (which is substantial), is disregarded by focusing only on punctuality. Thus, a reliable 

option in this sense may be risky. 

Instead, we need to formally define risk. A common choice is the Value at Risk at level 𝛼 ∈ [0,1], 

which returns the delay that will not be exceeded with probability 1 − 𝛼 (Philippe, 2006). Assuming 

confidence level 𝛼 = 0.05 , we observe for above's routes that the delay in 95% of the time does 

not exceed the following thresholds:  

𝑉@𝑅0.95(𝐷1) = 0, 𝑉@𝑅0.95(𝐷2) = 𝑉@𝑅0.95(𝐷3) = 15.     (5) 

We observe that the direct connection is considered less risky than the policies including a 

transfer. But the two adaptive policies are considered equally risky, even though they vary greatly 

in their design. This results from the fact that the worst-case scenarios which occur with probability 

lower than 5% are not taken into account. For 𝜇3 there exists the rare probability to miss every 

transfer and be 60 minutes delayed, hence its worst case scenario is much more unpleasant than 

the one from 𝜇2. This may be contradictory to being considered equally risky according to (6.2). 

An alternative risk measure is the Conditional Value at Risk, where risk is computed as the 

conditional expectation over all worst case events which occur with probability less than 𝛼 

(Philippe, 2006). For the given routes, that yields  

𝐶𝑉@𝑅0.95(𝐷1) = 0.25,  𝐶𝑉@𝑅0.95(𝐷2) ≈ 15.48, 𝐶𝑉@𝑅0.95(𝐷3) = 37.5.  (6) 

We observe that this is a more conservative risk measure, valuing tail events more and accounting 

for the possibility of complete failure of route 𝜇3 by correcting the risk upwards significantly. This is 

congruent on how one may feel about this option, making 𝐶𝑉@𝑅(𝐷𝑖) a possible risk measure to be 

adopted in a stochastic optimization model. Although mathematically and conceptually appealing, 

CV@R may be difficult to interpret or explain compared to the measures introduced, hindering the 

potential use of it in practice. 

It becomes apparent that the choice of risk measure is relevant for accurately modelling passenger 

route choice. To define it properly and study their effects, an adequate route choice model is 

needed. 

While the PT system in real-life might be more complex, many of the struggles in the example 

remain. Passengers have to make boarding decisions without foreknowledge on the realization of 

the trip. Even though they can adapt their decisions later on, they also typically have a route in 

mind which can be considered an optimal solution of a least cost path choice model, based on a 

probability distribution learned based on experience, where the existence of paths and their cost is 

based on their random travel times. 

4.2.2.2 Route Choice Model 

While V@R and CV@R are intuitive and common ways to describe the risk perception of 

passengers, there are many more possibilities to choose from. In order to find the best among all of 
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these options, it is necessary to understand how passengers move through the PT system in general, 

that is their route choice and decision-making process. Due to the uncertainty of depending on 

information and a multitude of scenarios a passenger can face during their trip, they usually do not 

make a one-off path decision at the beginning of their trip and stick to it regardless of the course of 

the journey. Instead, passengers are assumed to be more flexible and to take recourse action when 

real-time information becomes available - either because the information suggests a preferable route 

the passenger might switch to voluntarily, or because their original route is no longer available and 

they are forced to reconsider. That is, instead of a fixed path passengers choose a strategy for 

making decisions based on the current state of the network when traveling. 

In the following, we will describe a model of adaptive route choice in an STD network which accounts 

for this travel behaviour and which will serve as the basis for studying the suitable risk measure. This 

is based on the model described by (Gao & Chabini, 2006) which was designed for traffic networks. 

However, we will adapt it to also account for a crucial difference of traffic and PT networks: the 

existence of certain links (and with this, routes through the network) is also stochastic and time-

dependent in PT. Hence, the underlying STD network will be adapted to fit this context. Based on 

this, we will be able to discuss the importance of risk in passenger route choice and the differences 

and impact of the various risk measures. 

4.2.2.3 The Network 

Consider a stochastic time-dependent network 𝐺 = (𝑁, 𝐴, 𝑇, 𝑃). The stations are captured in the set 

of nodes 𝑁 , which is fixed and deterministic over time. The links (or arcs) 𝐴  between the stations 

are trips between stations provided by the PT service. The travel times of the links underlie the 

probability distribution 𝑃 , which possibly depends on the time period 𝑡 ∈ 𝑇  =  {0,1, … , 𝐾 − 1} (as for 

e.g. during peak hour travel times are generally longer). Trips are scheduled by the timetable and 

depend on the time: Whether a link between two nodes exists in time period 𝑡  depends on whether 

a trip is scheduled at this time. However, the existence of trips is also stochastic, as they might be 

cancelled or delayed (and thus exist not in time period 𝑡  but in 𝑡 + 1 ). This is also captured in the 

probability distribution 𝑃 . 

Following the notation from (Gao & Chabini, 2006), we furthermore denote by 𝐶𝑖𝑗,𝑡
∼  the random 

travel time on the arc connecting the nodes 𝑖  and 𝑗  in time period 𝑡  (where the randomness is 

made apparent by ~). The set of support points of the probability distribution (i.e. the scenarios with 

non-empty probability) is assumed to be finite and denoted by 𝑃 = {𝑣1, … 𝑣𝑅}. For a given support 

point 𝑣𝑟 ∈ 𝑃, the probability is 𝑝𝑟 = 𝑃(𝑣𝑟) and the realized travel time of an arc is accordingly 𝐶𝑖𝑗,𝑡
𝑟 . 

Finally, we denote the single destination node by 𝑑 . 

4.2.2.4 The Decision Process 

A decision of a passenger describes the choice of which link to take next. We assume that 

passengers can make decisions only at nodes (i.e. stations) since these are the only places where 

they can actively follow up on their decisions. Decisions are furthermore made based on the 

current state 𝑥 = (𝑗, 𝑡, 𝐼), which consists of the current node 𝑗  of the respective passenger, the 

current time period 𝑡  and the current information available to the passenger 𝑖 . The current 

information consists of a set of available realized links and their travel times that are useful for 

making inferences about future link travel times. A discussion of what this means in detail and how 

different kinds of information influence decision making is provided by (Gao & Chabini, 2006). As it 

depends on time and location, current information will be denoted by 𝐼 = 𝐼(𝑗, 𝑡) whenever node and 

time are not clear from the context. Regardless of whether the available information includes no, 

partial or total knowledge about the system state, we assume that passengers know the probability 

distribution of travel times a priori. 



  

CO (confidential – consortium only) | 1.0 | Final version   Page 88 | 130 

A routing policy is a decision rule that specifies which node to take next at each decision node 

based on the current time and information, i.e. a mapping from a state 𝑥  to a decision for every state. 

A path is a special case of a routing policy, where the decision only depends on the node but is the 

same regardless the time and available information. For any realized scenario of the STD network 

(the PT system), a policy manifests itself as a path. 

Next, we aim to determine optimal routing policies, which are routing policies that move a 

passenger through the PT network from their origin to the destination station while optimizing some 

objective. In this model, future adaptive choices of the routing policies are fully considered. In (Gao 

& Chabini, 2006), an optimal routing policy minimizes the total travel time of the trip, however, we 

will discuss alternatives to this objective focusing on the risk of the trip. 

During a trip, a passenger will experience a series of states {𝑥0, 𝑥1, … , 𝑥𝑆}, which we will call a state 

chain. The initial state is 𝑥0, while 𝑥𝑆 denotes the state where the destination node 𝑑  is reached, i.e. 

where 𝑑  is the current node. Current nodes of a state chain form a path and 𝑆  is the number of links 

in that path. Given initial state 𝑥0 and routing policy 𝜇, one can experience multiple state chains 

depending on the realization of the STD and the set of possible state chains is denoted by 𝑀(𝑥0, 𝜇). 

While (Gao & Chabini, 2006) assumed that there was always at least one path from any node to the 

destination node under any possible realization of link travel times, it is of the very nature of PT 

systems that this is not the case. Links may be cancelled or a path may not be completed in the time 

frame 𝑇  due to delays or other complications. However, we assume that in the deterministic network 

provided by the timetable of the PT system, there is at least one path available from any node to the 

destination node which is completed within the given time frame 𝑇 . To evaluate the probability of 

not arriving in-time or at all is a crucial aspect of the subsequent analysis. 

4.2.2.5  The Minimization Problem 

The Optimal Routing Policy (ORP) Problem introduced by (Gao & Chabini, 2006) determined an 

optimal routing policy by minimizing the expected total travel time as the focus of their studies of 

routing in a traffic network. This is a common and reasonable approach, as the length of a journey 

is an important factor in routing decisions. Furthermore, the linearity of the expectation operator 

allowed for solving this problem dynamically and also provided optimality conditions for the solutions 

of the ORP problem. This can analogously be done for this setting, where the difference mainly lies 

in the probability of non-existence of links. However, we assume that this is accounted for in the 

probability distribution 𝑃 , thus the very general formulation of (Gao & Chabini, 2006) still holds. In 

practical application and computations, this will however be more difficult. 

Instead of minimizing total travel time, we instead tackle the problem of minimizing risk. Recall that 

risk is always evaluated in comparison to a reference value, which in PT usually is a path planned 

ahead and associated with travel and arrival times provided by the timetable. In the following, we 

assume this deterministic reference path 𝑝  to be chosen already and denote its scheduled, 

deterministic arrival time by 𝑡𝑝. Note that the choice of this path is in itself not trivial and can also be 

described as an optimization problem (possibly in a non-stochastic network). What is considered the 

best path again highly depends on the preferences of the respective passenger. 

Moreover, the risk of a policy depends on the probability distribution of the link realizations, travel 

times and the knowledge a passenger has about these distributions. That is, the risk depends on the 

current state. 

Finding an optimal routing policy which minimizes the risk with respect to a previously planned path 

𝑃 thus amounts to solving 
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 𝜇∗  =   arg min
𝜇

𝜌(𝜇, 𝑝,  𝑥0) ∀𝑥0.      (7) 

The question remains what a reasonable choice of risk measure is, as well as whether and how this 

optimization problem can be solved. 

4.2.2.6 Example Discussion 

The formulation of (Eq. 7) to derive the optimal policy is very general. This is advantageous as it can 

be tailored to various different settings and problems and allows a more abstract discussion about 

the functionalities and properties of different risk measures as a way of calculating the optimal routing 

strategy. However, (Eq. 7) is in itself far from concrete. To make it more approachable, we show its 

use and also why the abstract formulation is useful, hence applying (Eq. 7) to the basic routing 

problem introduced in Section 4.2.2.5. For this simple setting, we explain notation and illustrate that 

capturing risk-based adaptive decisions is a complex task. We will also look again at different risk 

measures and discuss their advantages and disadvantages. 

The example network consists of the nodes 𝑁 = {𝑠0, 𝑠1,  𝑠2} and the arcs 𝐴  provided by the orange, 

green and pink line of the PT system as shown in Figure 51. 

The probability distribution 𝑃  describes the probability of on-time or delayed arrival of each of the 

pairwise independent lines and is assumed to be known in advance. It is provided in (Eq. 4). Each 

line has two possible realizations: it can either be punctual or delayed, which in the following will be 

denoted by 𝑝  or 𝑑 , respectively. The respective delay 𝐷  depends however on the line and is given 

in (Eq. 4). Derived from the different combinations of these realizations for the three lines, there is a 

total of 8 possible scenarios of how the whole PT system will be realized. In line with the notation 

from (Gao & Chabini, 2006), we denote these by 𝑃 = {𝑣1, … , 𝑣8} and provide a list in Table 8. 

Table 8: List of possible scenarios including the state of each line, the respective delay in minutes 

and the probability of the scenario 

Scenario 

Realization of line Delay (in minutes) 

Probability of Scenario 
Orange Green Pink 𝐷𝑜  𝐷𝑔  

𝐷𝑝 

 

 P P P 0 0 0 0,4275 

 P D P 0 10 0 0,0475 

 P P D 0 0 30 0,4275 

 D P P 5 0 0 0,0225 

 P D D 0 10 30 0,0475 

 D P D 5 0 30 0,0225 

 D D P 5 10 0 0,0025 

 D D D 5 10 30 0,0025 
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Depending on the realization of the individual lines, transfers between different lines might be 

possible/desirable or not. Based on this, passengers might choose different paths according to their 

preference. Thus, the policies, which are functions 𝜇𝑖: 𝑃 → 𝑃𝑎𝑡ℎ𝑠, will have different realized paths 

depending on the scenario. The different outcomes of the policies 𝜇1, 𝜇2, 𝜇3 for the scenarios are 

described in Table 9. The notation (𝑙1, 𝑙2) consists of the two parts of the trip, where 𝑙1, 𝑙2 ∈ {𝑜, 𝑔, 𝑝} 

denote how one travels to node 𝑠1 or 𝑠2, respectively. 

Finally, we need to introduce a notation for time. As we are not interested in specific departure or 

travel times, but simply in the deviation from the originally planned arrival, we reduce to the following 

notation. At station 𝑠0, we only consider a default time 𝑡0. At stations 𝑠1 and 𝑠2, we denote the time 

by 𝑙𝑘, where 𝑙 ∈ {𝑜, 𝑝, 𝑔} and 𝑘 ∈ {𝑝, 𝑑}. Thus, the time 𝑙𝑘 at a station is denoted as the time of arrival 

by a specific line and whether it is on-time or delayed. At station 𝑠1, the possible times are in 

subsequent order {𝑜𝑝 , 𝑜𝑑, 𝑔𝑝 , 𝑔𝑑} and at 𝑠2 it is {𝑝𝑝, 𝑜𝑝 , 𝑜𝑑, 𝑝𝑑}. 

Table 9: List of possible scenarios, the realized paths for each policy, the arrival time at the destination 

nodes  and the respective delay (in comparison to respective planned path ri) 

Scenario Realized path Arrival time at 𝑠2 Delay (in minutes) 

𝜇1 𝜇2 𝜇3 𝜇1 𝜇2 𝜇3 𝐷1 𝐷2 𝐷3 

𝑣1 oo op go 𝑜𝑝 𝑝𝑝 𝑜𝑝 0 0 0 

𝑣2 oo op ox 𝑜𝑝 𝑝𝑝 x 0 0 60 

𝑣3 oo oo go 𝑜𝑝 𝑜𝑝 𝑜𝑝 0 15 0 

𝑣4 oo oo go 𝑜𝑑 𝑜𝑑 𝑜𝑑 5 20 5 

𝑣5 oo oo op 𝑜𝑝 𝑜𝑝 𝑝𝑑 0 15 15 

𝑣6 oo oo go 𝑜𝑑 𝑜𝑑 𝑜𝑑 5 20 5 

𝑣7 oo oo go 𝑜𝑑 𝑜𝑑 𝑜𝑑 5 20 5 

𝑣8 oo oo go 𝑜𝑑 𝑜𝑑 𝑜𝑑 5 20 5 

The single destination node in this example network is 𝑠2 and on their way to the destination, a 

passenger encounters different states on their trip, depending on the network realization and the 

decisions of the passenger. In general, the current state of a passenger 𝑥 = (𝑠, 𝑡, 𝐼) consists of the 

the node, time and available information. Thus, in this case there is a single initial state 𝑥0 =
(𝑠0, 𝑡0, 𝑃). The initial state is composed of the origin node 𝑠0, the default starting time 𝑡0 and the 

available information, which consists of the knowledge about the probability distributions about the 

delays of all lines 𝑃 . We assume that all departures at 𝑠0 are on-time and the realization of the PT 

system happens upon arrival at station 𝑠1, hence from that point onward the passenger knows the 

scenario 𝑣 ∈ 𝑃 . Thus, for stations 𝑠1 and 𝑠2, the current state of a passenger is of the form (𝑠, 𝑙𝑘, 𝑣), 

i.e. consisting of the station 𝑠 , the time of arrival 𝑙𝑘 and the complete information about the PT system 

in the form of the scenario 𝑣 . A state chain (𝑥0, 𝑥1, 𝑥2) is a sequence of states a passenger 

encounters during their trip and it depends on the chosen policy and the realized scenario. The set 

of possible state chains for a policy 𝜇 is denoted by 𝑀(𝜇) (and does not depend on the choice of the 

initial state 𝑥0 as there is only one). 
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A passenger has to make a boarding decision at station 𝑠0 based on the current and only initial state 

𝑥0. As the realization of the PT system happens upon arrival at station 𝑠1 and at this point the delay 

of each line and possible transfers are known completely, the passenger has the option to take 

recourse action based on their preferences at station 𝑠1.  

The passenger decides for one of the three policies 𝜇1, 𝜇2, 𝜇3, which provide available strategies to 

move through the network from stations 𝑠0 to 𝑠2. As we assume that the passenger is only interested 

in the risk of a policy, i.e. evaluating the deviation from schedule, a reference path and arrival time 

is needed to compare the actual realization to. For each policy, this reference path 𝑝𝑖 was implicitly 

chosen as the path with optimal outcome of the respective policy, corresponding to the scheduled 

routes 𝑅 . That is, 𝑝𝑖 = 𝑟𝑖 for each policy 𝜇𝑖, 𝑖 = 1,2,3  (cf. Section "Example Discussion). Since there 

is only one initial state 𝑥0, for the optimization problem (Eq.7), the passenger solves to find the policy 

that minimized the risk, which reduces to  

𝜇∗ = arg min
𝑖∈{1,2,3}

𝜌(𝐷𝑖 , 𝑟𝑖)  (8) 

Therefore, the optimal policy indeed only depends on how the risk measure 𝜌 evaluate the risk of 

the policy 𝜇𝑖 in comparison to the planned path 𝑟𝑖. As we aim to evaluate only delays, we can reduce 

the notation even further. Recall that the delay of policy 𝜇𝑖 is given by 𝐷𝑖 = 𝑡2 − 𝑡𝑟𝑖
, where 𝑡2 denotes 

the time of the final state 𝑥2, i.e. the actual time of arrival, and 𝑡𝑟𝑖
 is the scheduled time of arrival of 

the reference path 𝑟𝑖. While 𝑡𝑟𝑖
 is deterministic, 𝑡2 (and therefore also 𝐷𝑖) depends on the state chain 

(𝑥0, 𝑥1, 𝑥2) ∈ 𝑀(𝜇𝑖), and is therefore random. Hence, determining the optimal policy based on 

minimizing the risk of delay is done by  

 𝜇∗ = arg min
𝑖∈{1,2,3}

𝜌(𝐷𝑖)     (9) 

Based on this, we are now able to discuss the choice of risk measure 𝜌 that is suitable in this example 

and for the preferences of different passengers. For this, we look at some common and simple 

examples of risk measures: the expected delay, the Value at Risk and the Conditional Value at Risk. 

4.2.2.7 Expected Delay 

The most basic choice of how to evaluate the deviation from plan is to determine the expected delay. 

By doing this, the optimal policy is derived by solving 

𝜇∗ =   arg min
𝑖∈ {1,2,3}

𝐸 (𝑥0,𝑥1,𝑥2)∈𝑀(𝜇𝑖)[𝐷𝑖]    (10) 

Considering that the time of arrival depends on the scenario 𝑣  and policy 𝜇𝑖, i.e. 𝑡2(𝜇𝑖 , 𝑣), we can 

rewrite the expected delay as follows  

𝐸{(𝑥0,𝑥1,𝑥2)∈𝑀(𝜇𝑖)}[𝐷𝑖 ]   (11) 

=   ∑

{(𝑥0,𝑥1,𝑥2)∈𝑀(𝜇𝑖)

(𝑡2−𝑡𝑟𝑖
)

𝑃(𝑥0, 𝑥1, 𝑥2) 

=   ∑

{𝑣∈𝑃

(𝑡2(𝜇𝑖, 𝑣 )−𝑡𝑟𝑖
)

𝑃(𝑣) 

The expected delay for the three given policies is then computed as  
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 𝐸[𝐷1] =  0.25,  𝐸[𝐷2] =  8.125,  𝐸 [𝐷3] =  3.8125.   

Thus, the deterministic policy 𝜇1 is considered least risky in terms of expected delay. The adaptive 

policies have higher risk as they include the possibility of missing a transfer. While this increases the 

risk for 𝜇2 significantly, the fact that with 𝜇3 one might not be able to successfully conclude their trip 

at station 𝑠2 in time (for scenario 𝑣2) does not seem to impact the risk properly. 

With this example, it becomes also apparent that the choice of reference path 𝑝  is important. In 

reality, policy 𝜇2 might be considered an improved version of policy 𝜇1, as the optimal outcome of 𝜇2 

is shorter travel time and earlier arrival and the worse outcomes are just equal to 𝜇1 = 𝑟1. However, 

since the reference path of 𝜇2 is not 𝑟1, the risk of the two policies is not compared directly and 

cannot be compared intuitively without further explanation. This shows that the choice of reference 

path could also be improved in this example. 

Even though expected delay might not reflect all aspects of passengers’ risk preferences, its 

simplicity has computational advantages. Due to the linearity of the mean one can utilize dynamic 

programming to solve (Eq. 9). While this is clearly not necessary in this simplified one-stage 

stochastic programming problem, it is useful if more stages of decision making are involved. We 

refer to the optimality conditions discussed in (Gao & Chabini, 2006) for this, as (Eq. 9) can be 

rewritten in the corresponding form. 

4.2.2.8 (Conditional) Value at Risk 

Another intuitive choice of measuring risk is by determining the delay that will not be exceed by a 

certain probability. The formal definition of the Value at Risk at level 𝛼 ∈ [0,1] is  

 𝑉@𝑅1−𝛼(𝐷𝑖) = inf{𝑚 ∈ 𝑅|𝑃(𝐷𝑖 ≤ 𝑚) ≥ 1 − 𝛼. }  (12) 

 Recalling the results from (Eq. 5), we again observe that V@R has a similar flaw as the expected 

delay, as it assigns the same risk to 𝜇2 as to 𝜇3, which has the chance of not being completed, might 

not reflect passenger's risk preference. The common alternative is the Conditional Value at Risk, 

formally defined as  

𝐶𝑉@𝑅𝛼(𝐷𝑖) =  𝐸[ 𝐷𝑖  ∣∣ 𝐷𝑖  ≥ 𝑉𝑅𝛼 (𝐷𝑖) ].    (13) 

As computed in (6.3), 𝜇3 has indeed a significantly higher risk, as CV@R emphasized tail-events. In 

addition to serving this common risk preference, CV@R is also a convex risk measure, which might 

be a computational advantage for solving the optimization problem, especially in comparison to V@R 

which is not convex. 

This might indeed become necessary because solving (6.6) with dynamic programming as for e.g. 

done for the expected delay is only possible if the risk measure 𝜌 is additive. In reality, this is rarely 

the case as people tend to overestimate small risks and underestimate big ones (Kahneman & 

Tversky, 1979). Moreover, this is also congruent with the consequences of travel time variations in 

PT: Even small delay with one line may cause missed transfer and thus a large delay for a 

passenger. Therefore, the overall risk-minimizing route might not be optimal at every stage. This 

inherent nature of risk thus calls for alternative approaches in solving (Eq. 9). 
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4.2.3 Results and Outlook 

In this research we tackle the problem of adaptive routing based on minimizing the risk to provide a 

more accurate description of passenger behaviour in a PT network. The two main difficulties we take 

into account for approaching this problem are 

1. Modelling adaptive route choice in a stochastic time-dependent PT system, 

2. Defining risk and the choice of a suitable risk measure. 

In this work, we provided a model that addresses the first point. We defined a STD network and 

routing policies as an adaptive extension for deterministic path choice. Based on this, (Eq. 7) 

described the optimization problem to derive the optimal routing policy to minimize risk. This model 

is kept very general, which allows it to be applied to a variety of different settings. But due to the 

generality, it is less intuitive and applicable for concrete examples. As the second goal was however 

to analyse risk measures, the generality of the model allows it to take a broad view at them, define 

risk in a general manner and study the properties and suitability of different examples without 

restricting ourselves to a specific setting. 

We applied the model to a toy network to show how it can be applied. Within this example, we applied 

some examples of risk measures to show their differences and discuss their computational and 

interpretational advantages. This discussion needs to be extended with looking into the properties 

of risk measures in more detail. It will also be helpful to consider a more advanced example to really 

highlight the differences of adaptive routing in comparison to other ways of path choice, and its effect 

also on the risk of the route. 

4.3 Optimisation of Demand Responsive Transport 

4.3.1 Intent of demand responsive optimisation  

This component addresses the problem of precisely estimating the number and type of required 
vehicles for pickup and delivery of passengers for some time in the future. It builds upon the 
Prediction Models for Demand Responsive Transport described in the section above, using its 
predictions as input data. In addition to demand predictions, we are also utilizing historical 
reservation data. The output consists of the total number of required vehicles across all routes, 
along with detailed information for specific routes of interest. 

To generate the desired output, we first take the prediction data and simulate reservation data. 

Each reservation includes attributes such as start location, end location, and pickup time. However, 

certain features cannot be directly inferred from demand predictions, so we derive them from 

historical data. Specifically, we use historical data to create three distributions related to: 

• Number of passengers per reservation – The typical group size within a single booking. 

• Reservation type – Travel preferences that dictate whether a passenger prefers a private 

vehicle or is willing to share a ride. 

• Pickup/delivery time window – Defines the flexibility of pickup and drop-off times, whether 

we are looking at a fixed time, or a more variable interval, which impacts pricing and 

passenger experience. 

Demand predictions provide hourly passenger estimates for different days. Using these 

predictions, our component simulates reservation data by sampling values from the historical 
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distributions of the previously mentioned parameters. The generated reservation data is structured 

according to the required format for the Route Optimization Engine. 

To ensure robust route planning, we generate 100 independent reservation samples for each day 

and we submit each sample as an independent job in the Route Optimization Engine. This engine 

is engaged at two key stages: 

1) Preprocessing – Used to determine travel times between locations based on specific 

departure times. This helps define feasible delivery intervals for each pickup window. 

2) Optimization – Each reservation sample is processed as an independent job, where 

passengers are assigned to vehicles, and routes are optimized to ensure efficiency. 

As a result, the system calculates the total number of vehicles required per day, as well as for each 

specific route for each sample. Once the optimization process is complete, the final step involves 

aggregating and analysing the results obtained from all 100 independent samples. This analysis 

focuses on identifying patterns and trends in fleet requirements by examining statistical measures 

such as mean, standard deviation, and overall distribution. By assessing these variations, we gain 

a deeper understanding of how demand fluctuates across different days and routes. Additionally, 

the results are validated against historical data to ensure consistency, accuracy, and reliability in 

the estimated vehicle requirements. This validation process helps refine the approach and 

enhances confidence in the system’s predictive and optimization capabilities. 

Regarding the results, we conducted both a global analysis and a more detailed, route-level 

analysis to uncover patterns within individual routes. 

We began by examining the distribution of the number of passengers and vehicles, as well as the 

correlation between these two variables. It's important to note that passengers are first grouped 

into visits using statistical sampling methods, and then further grouped into vehicles by the routing 

engine. 

The visualisations reveal a strong linear correlation between the number of passengers and the 

number of vehicles, which is expected. However, there is some variance, suggesting that 

fluctuations in passenger count do not always directly translate to proportional changes in the 

number of vehicles. This can be attributed to differences in reservation types and the number of 

people per reservation, which influence how passengers are grouped into vehicles. 
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Figure 52: Daily vehicles distribution 

 

Figure 53: Daily passengers distribution 
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Figure 54: Total passengers vs vehicles 

Additionally, we analysed the correlation between different routes and examined the distribution of 

vehicles and passengers on a per-route basis. This allowed us to assess how consistently the 

number of passengers aligns with the number of vehicles across individual routes, revealing route-

specific patterns and variations in demand and vehicle allocation. 
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Figure 55: Correlation heatmap between passengers and vehicles by route 

 

Figure 56: Boxplot of passenger distribution by route 
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Figure 57: Boxplot of vehicle distribution by route 

The methodology of the component is represented in the image below. 

 

Figure 58: Continuous Planning Methodology 
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5. ANOMALY DETECTION 

5.1 Anomaly detection in traffic patterns 

The Anomaly Detection component within the CONDUCTOR ecosystem is designed to identify 

irregularities in traffic behaviour, offering timely insights into deviations from expected operational 

norms. This functionality plays a pivotal role in the broader context of adaptive traffic and fleet 

management, contributing to the system’s responsiveness, resilience, and overall efficiency. 

As outlined in Deliverable D3.3, anomalies in traffic data refer to patterns that deviate significantly 

from historical or contextually expected behaviour. These anomalies can be the result of unplanned 

events such as traffic incidents, weather disturbances, or atypical demand surges, as well as 

scheduled disruptions like roadworks or major public gatherings. A comprehensive conceptual 

overview and classification of anomaly types—including point, contextual, and collective 

anomalies—was presented in Section 3.1.1 of D3.3, laying the theoretical foundation for the 

detection approaches that follow. 

In this final iteration, the work conducted under Task 3.5 has progressed from preliminary 

experimentation to a more mature and operational version of the anomaly detection module. Building 

upon the methodologies introduced in the initial implementation (D3.3), the current chapter describes 

the finalized specifications, implementation updates, and methodological refinements based on 

simulation insights and technical validation activities conducted throughout the project timeline. 

The anomaly detection functionality remains centred on a macroscopic approach, with the primary 

objective of identifying periods where the collective performance of the monitored network exhibits 

unusual behaviour. Rather than detecting micro-level events such as isolated vehicle breakdowns 

or individual lane closures, the system aims to uncover larger-scale deviations that signify network-

wide inefficiencies or disruptions. 

In the sections that follow, we detail the enhancements introduced in the anomaly detection workflow, 

the enriched datasets used for training and evaluation, the refined modelling techniques, and the 

integration pathway towards the overall CONDUCTOR architecture. These updates reflect both the 

lessons learned from the initial deployment and the progressive alignment with real-world 

deployment scenarios provided by the Athens use case. 

5.1.1 Architecture of the Proposed Solution 

The finalized architecture of the Anomaly Detection component has been structured to ensure 

operational efficiency, scalability, and seamless integration within the broader CONDUCTOR 

framework, with specific tailoring for the Slovenian pilot. The design reflects the modular nature of 

the service, enabling flexibility across diverse deployment environments while ensuring robustness 

in real-time operation. Data ingestion is initiated through the interface provided by Jozef Stefan 

Institute (JSI), which acts as a proxy service to the historical traffic datasets maintained by National 

Access Point (NAP) Slovenia. This layer facilitates structured and secure access to the required 

traffic records, forming the foundation of the anomaly detection pipeline. Upon retrieval, the incoming 

data undergo a comprehensive preprocessing workflow, which includes systematic data cleaning 

procedures, Exploratory Data Analysis (EDA), and imputation strategies. These steps, as elaborated 

in earlier stages of the project, are critical in ensuring data reliability and consistency, both of which 

are essential for the effective training and deployment of anomaly detection models. 

Following preprocessing, the dataset is partitioned into training, validation, and test subsets to 

support methodical model development. A range of machine learning models is subsequently trained 

and validated using these splits. Hyperparameter tuning and iterative refinement are carried out 
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based on key performance metrics, with the highest-performing configurations evaluated on the 

holdout test set to ensure robustness and generalizability to unseen data. Upon final selection, the 

optimized model is serialized and embedded within a dedicated deployment script. This script is 

integrated into a FastAPI application that exposes an HTTP endpoint, enabling real-time inference 

capabilities. The deployed service is designed for continuous operation, facilitated by an automated 

scheduling mechanism (Command Run On Notice - CRON job) that periodically fetches current 

traffic data at fixed intervals for analysis. The system’s response comprises of the original dataset 

enriched with an additional output column, denoting the anomaly likelihood score for each record. In 

instances where anomalies are detected, the service also generates a targeted notification message, 

explicitly flagging the presence of abnormal traffic conditions. This structured output is intended to 

inform downstream traffic management components, thereby enhancing situational awareness and 

enabling prompt operational responses. Overall, the proposed architecture ensures that the anomaly 

detection service remains technically sound, easily extensible, and deployment-ready for real-world 

scenarios. It also retains the flexibility required to accommodate evolving pilot-specific needs and 

potential future integrations with alternative data providers. 

 

Figure 59: Continuous Planning Methodology 

5.1.2 Data Enhancements and Preprocessing Workflow 

In alignment with the evolving focus of the CONDUCTOR project and the refinement of pilot-specific 

requirements, the anomaly detection service was methodologically tailored to accommodate the data 

landscape of the Slovenian use case. The primary source of traffic data originates from NAP 

Slovenia; however, due to the platform’s inherent limitations in terms of long-term data retention, an 

alternative data access strategy was employed. Specifically, historical data were retrieved through 

an API maintained by the JSI, which offers persistent archival access to traffic records of the region. 

This integration ensured the availability of adequate historical context necessary for model training 

and validation, albeit within a framework constrained by technical considerations. In particular, API 

rate-limiting policies necessitated a segmented data retrieval strategy, wherein data were ingested 

incrementally across multiple batches. Through this process, a representative training dataset was 

compiled, encompassing a period of approximately three months. Upon ingestion, the dataset was 
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received in its raw form, characterized by inconsistencies, missing values, and noise—a common 

scenario in traffic-related datasets. To address these challenges, a structured Exploratory Data 

Analysis (EDA) phase was executed as the initial stage in the processing pipeline. This phase 

involved the temporal alignment of timestamped records, detection and flagging of statistical outliers, 

and the application of a comprehensive suite of data cleaning procedures. 

 

Figure 60: Analysis on the frequency distribution of average speeds (EDA) 

In the context of missing data, a tiered imputation strategy was adopted, informed by the specific 

nature and duration of data gaps. Short-term discontinuities were addressed using forward and 

backward fill techniques, while longer or periodic sequences of null values were imputed using rolling 

time-window medians. In cases where preserving the inherent temporal seasonality of the traffic data 

was deemed critical, decomposition-based approaches were also incorporated to retain daily and 

weekly periodicity patterns. Concurrently, the dataset was augmented with a set of contextual 

features aimed at enriching the input space of the anomaly detection models. These included 

indicators such as the day of the week, and time-of-day variables, enabling the models to capture 

behavioural aspects associated with typical versus atypical traffic conditions. Standard normalization 

procedures were applied across numerical attributes to ensure comparability and model 

convergence. This preprocessing workflow established a robust foundation for the subsequent 

modelling phases, ensuring data quality, consistency, and contextual integrity. By doing so, it 

strengthened the capacity of the anomaly detection framework to generalize effectively and respond 

to the dynamic conditions present in real-world traffic systems. 
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Figure 4 Slovenian Traffic Data from JSI API 

5.1.3 Model Refinement and Ensemble Approaches 

As presented in Deliverable D3.3, the initial implementation of the anomaly detection module was 

grounded in a series of foundational models, including One-Class Support Vector Machines 

(OneClassSVM), Isolation Forest, Local Outlier Factor (LOF), and Long Short-Term Memory 

(LSTM) neural networks. These models served as a valuable starting point, enabling the team to 

establish baseline performance metrics and to explore the feasibility of different detection paradigms 

under constrained, simulation-based scenarios. While the preliminary results demonstrated notable 

potential, especially within controlled environments, several key limitations emerged during 

subsequent phases of testing and validation. Among the most prominent challenges were those 

associated with class imbalance, overfitting to sparsely distributed anomalies, and a lack of 

consistent generalization across varied temporal and spatial contexts.  

These constraints underscored the necessity of adopting a more resilient modelling strategy capable 

of mitigating individual model weaknesses and increasing overall robustness. In response to these 

findings, the final implementation introduces an ensemble-based [see Figure 61] anomaly detection 
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architecture. The ensemble framework integrates the outputs of multiple heterogeneous base 

models through both majority voting and weighted averaging schemes. These combination 

strategies were selected for their capacity to improve detection consistency while reducing the 

sensitivity to noise, model-specific errors, and overfitting tendencies. The adoption of ensemble 

learning represents a significant advancement over the initial standalone model architecture, 

allowing for more stable performance across varying traffic conditions. Moreover, it enhances the 

interpretability and operational reliability of the system by aggregating evidence from multiple 

independent perspectives, thereby reducing the likelihood of false alarms and increasing confidence 

in anomaly identification. This shift toward ensemble approaches reflects the project’s iterative, 

evidence-driven methodology, and aligns with the overarching goal of deploying a technically sound, 

adaptable, and high-performing anomaly detection service within the CONDUCTOR framework. 

5.1.4 Majority Voting 

The first ensemble strategy employed in the final anomaly detection framework is a majority voting 

mechanism, aimed at enhancing classification robustness by enforcing consensus among multiple 

base detectors. Let 𝑀𝑖 ∈ ℳ, where ℳ denotes the set of participating models in the ensemble. 

Each model issues a binary decision 𝑣𝑖 ∈ {0,1} for a given sample 𝑥, with 𝑣𝑖 = 1 indicating the 

presence of an anomaly and 𝑣𝑖 = 0 otherwise. 

The collective decision function 𝑉(𝑥) is then defined as: 

𝑉(𝑥) = {
1, if ∑ 𝑣𝑖

𝑁

𝑖=1

≥ ⌈
𝑁

2
⌉

0, otherwise

 

where 𝑁 =∣ ℳ ∣ is the total number of models in the ensemble. 

This scheme requires a strict majority in favour of the anomaly label in order for a sample to be 

classified as such. By design, this approach mitigates the impact of individual false positives and 

promotes resilience in the presence of occasional misclassifications by isolated models. As such, 

majority voting enhances overall decision reliability, particularly in high-noise environments. 
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Figure 61: Majority Voting Schema of Anomaly Detection module 

Table 10: Evaluation metrics of base models and the majority voting ensemble for the anomaly class 

Model Precision Recall F1-Score 
OneClassSVM 0.74 0.63 0.69 

Isolation Forest 0.52 0.93 0.59 

Local Outlier 

Factor (LOF) 
0.7 0.3 0.46 

LSTM 0.75 0.61 0.57 

Majority 

Voting 

Ensemble 

0.78 0.76 0.81 

The majority voting mechanism outperforms the individual base models by balancing recall and 

precision. The ensemble achieves a higher F1-score by mitigating extreme behaviours (e.g., 

Isolation Forest's high recall but low precision) and improving overall detection consistency. 

5.1.4.1 Weighted Averaging 

To complement the binary nature of majority voting and enable more nuanced decision-making, a 
weighted averaging scheme was also incorporated into the ensemble pipeline. This technique 
leverages the probabilistic outputs of individual models, thereby integrating model-specific 
confidence levels into the anomaly detection process. 

Each model 𝑀𝑖  produces a continuous anomaly score 𝑠𝑖(𝑥) ∈ [0,1], interpreted as the estimated 
probability of an anomaly for a given sample 𝑥. These scores are combined into a single 

aggregated value 𝑆(𝑥), defined as: 
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𝑆(𝑥) = ∑ 𝑤𝑖

𝑁

𝑖=1

⋅ 𝑠𝑖(𝑥) 

subject to the constraints: 

∑ 𝑤𝑖

𝑁

𝑖=1

= 1, 𝑤𝑖 ≥ 0 

The model weights 𝑤𝑖 are determined via cross-validation on a held-out validation set, optimized to 

maximize the F1-score while simultaneously minimizing the rate of false positives. 

Once aggregated, the final score 𝑆(𝑥) is subjected to a classification threshold 𝜃, resulting in the 

predicted label 𝑦̂(𝑥) as follows: 

𝑦̂(𝑥) = {
1, if 𝑆(𝑥) ≥ 𝜃
0, otherwise

 

This fusion method allows the system to assign greater influence to models that exhibit stronger 
discriminative capacity, while still preserving ensemble diversity. Furthermore, the use of 
continuous scoring provides a transparent basis for threshold tuning and interpretability, which are 
critical in operational settings.Together, these ensemble strategies deliver complementary 
advantages. The majority voting scheme ensures robustness and stability in binary classification 
scenarios, while weighted averaging introduces probabilistic reasoning and performance-aware 
integration of model outputs. Collectively, they contribute to a more reliable, adaptable, and 
explainable anomaly detection framework, capable of managing the heterogeneity and temporal 
variability inherent in real-world traffic data environments. 

Table 11: Weighted averaging ensemble performance with weights derived via F1-optimized cross-

validation 

Model Weight Precision Recall F1-Score 
OneClassSVM 0.35 0.74 0.63 0.69 

Isolation Forest 0.15 0.52 0.93 0.59 

LOF 0.2 0.7 0.3 0.46 

LSTM 0.3 0.75 0.61 0.57 

Weighted 

Averaging 

Ensemble 

— 0.83 0.78 0.84 

By assigning greater influence on models with stronger discriminative capacity (e.g., LSTM, 

OneClassSVM), the weighted ensemble achieves improved balance and slightly outperforms the 

majority voting scheme in terms of F1-score. This method also allows threshold flexibility through 

score tuning. 

5.1.5 Deployment and Evaluation 

A major enhancement in this final version of the anomaly detection module is its technical readiness 

for real-time deployment. The codebase was modularized to support maintainability and integration 

within the broader CONDUCTOR system, while targeted optimizations improved inference speed. 

By incorporating TensorFlow Lite and applying model quantization techniques, the module now 
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achieves low-latency execution, making it suitable for continuous monitoring scenarios where 

response time is critical. For evaluation purposes, both historical traffic data and synthetically 

labelled datasets were employed to benchmark performance. The models developed during this 

iteration consistently outperformed the baselines reported in D3.3, achieving F1-scores above 0.1 

across multiple test sets. Among the most promising results was the performance of the LSTM-

based ensemble, which demonstrated high accuracy—up to 88%—in detecting reduced-speed 

anomalies during off-peak hours, a scenario often difficult to capture due to limited variation in input 

signals. 

It is important to highlight that anomalies represent a very small portion of the dataset, which presents 

a challenge typical of imbalanced classification problems. In such cases, common metrics like overall 

accuracy can give a false impression of model effectiveness. Therefore, the confusion matrix plays 

a central role in the evaluation, as it clearly illustrates how well the model performs in identifying true 

anomalies while avoiding false negatives. A correct classification of rare events is far more valuable 

than achieving high accuracy through consistent prediction of the majority (normal) class. 

 

Figure 62: Confusion Matrix of the best performing combination 

The confusion matrix presented above provides a detailed view of the anomaly detection model’s 

final performance during evaluation. Out of a total of 98,528 observations, 98,037 were correctly 

classified as normal, with zero false positives, highlighting the system's ability to avoid 

unnecessary alerts under stable traffic conditions. More importantly, the matrix reveals that 485 

true anomalies were successfully detected, while only 6 actual anomalies were missed. This result 

yields a true positive rate (recall) of 98.78% for the anomaly class, confirming the model’s capacity 

to identify rare but critical deviations with high reliability. The absence of false positives also 

underscores the effectiveness of the ensemble approach in suppressing noise and limiting over-

sensitivity—an aspect particularly relevant for real-time deployments, where false alarms can 

trigger unnecessary downstream reactions. 

Of particular note is the high precision achieved for the anomaly class, as all predicted anomalies 

correspond to actual events. This balance between high precision and high recall demonstrates 

that the anomaly detection module is not only sensitive to abnormal patterns but also selective in 

raising alerts, a dual requirement for operational trustworthiness. The cell representing true 

positives (actual anomaly / predicted anomaly) is deliberately highlighted in red to emphasize its 

significance within the context of rare event detection. It represents the core utility of the module—

its ability to correctly detect deviations in real-world traffic flow with minimal misclassification. In 

conclusion, the confusion matrix validates the module’s readiness for integration into the 
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CONDUCTOR system, offering both accuracy and stability, and demonstrating its capacity to 

deliver high-confidence detections even in the presence of extreme class imbalance. 

 

 Moreover, during testing, it became evident that providing only a binary output—labelled as 0 

(normal) or 1 (anomalous)—was not sufficient to support real-time decision-making processes. To 

improve the interpretability and control of the system, the binary label was extended with a probability 

score, derived from the underlying model confidence. This score, ranging from 0 to 1 (or equivalently, 

0% to 100%), reflects the system’s estimated likelihood that a given observation represents an 

anomaly. By incorporating this probabilistic output, the anomaly detection framework allows greater 

flexibility in threshold selection, depending on the operational context and tolerance for false alarms. 

This approach also supports more informed responses, as stakeholders can prioritize or defer action 

based on the assigned likelihood of abnormal behaviour. 

With these enhancements, the anomaly detection module is now positioned as a deployable, high-

performance component of the CONDUCTOR traffic management system. It is capable of operating 

under real-world constraints, while offering high sensitivity to traffic deviations and adaptability to the 

specific needs of pilot deployments. 

 

Figure 63: Sample Visualization of Anomalies on Ljubljana section 
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Figure 64: Sample Output of the Enhanced dataset 

5.1.6 Technology Stack 

To support the development, deployment, and operation of the anomaly detection service, a modern 

and modular technology stack was adopted. The core implementation is based on Python, 

leveraging a combination of machine learning libraries, time series analysis toolkits, and lightweight 

deployment frameworks. 

Model development and data preprocessing tasks were performed using well-established Python 

libraries such as Scikit-learn, Pandas, and NumPy. To enhance the diversity and performance of the 

detection algorithms, specialized anomaly detection libraries like PyOD, STUMPY, and Kats were 

integrated into the pipeline. These tools provided advanced techniques for outlier detection, pattern 

discovery, and change point analysis in time series data. 

For deployment, the trained models were encapsulated in a FastAPI application served by Uvicorn, 

offering high-performance and asynchronous request handling. Postman was employed during 

development for testing and verifying API endpoints. The service was containerized using Docker, 

ensuring reproducibility and compatibility across environments. A cron job mechanism was 

introduced to automate periodic inference calls with incoming traffic data. 

This comprehensive and lightweight stack ensures the solution remains portable, maintainable, and 

easy to integrate within the broader CONDUCTOR ecosystem.  

Table 12: Technology stack for anomaly detection in transport supply 

Technology Purpose 

Python Core programming language used for model development and 

data processing 

Scikit-learn Implementation of baseline ML models and preprocessing 

utilities 
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PyOD Access to a broad suite of anomaly detection algorithms 

STUMPY Pattern discovery and anomaly detection in time series via 

Matrix Profile 

Kats Change point and anomaly detection in time series 

FastAPI Lightweight web framework for deploying the trained model as 

an API 

Uvicorn ASGI server used to serve the FastAPI application 

Postman Manual testing of API endpoints during development 

Docker Containerization of the service for reproducible deployment 

Cron Scheduled task automation for periodic inference requests 

Pandas / 

NumPy 

Data handling, manipulation, and numerical computations 

Matplotlib / 

Seaborn 

EDA and anomaly visualization tools 

5.1.7 Lessons Learned and Outlook 

One of the key insights emerging from this development cycle is the critical role of combining 

temporal depth with spatial granularity in anomaly detection for traffic monitoring. Initial experiments 

confirmed that models trained exclusively on data from single sensors often suffer from limited 

generalizability, failing to adapt across different spatial contexts or roadway segments. On the other 

hand, broader models developed at the road-segment level, while effective in identifying large-scale 

flow irregularities, occasionally overlook localised anomalies that manifest at a finer resolution. To 

address this, a hybrid modelling strategy was adopted, integrating both sensor-level precision and 

segment-level context. This approach proved effective in capturing not only routine fluctuations in 

traffic behaviour but also sudden disruptions, such as congestion spikes and abnormal flow 

reductions—thus offering a practical compromise between model sensitivity and stability. 

Another key consideration encountered during the deployment process was the uneven availability 

of data across the Ljubljana–Trieste route. While the anomaly detection module performs reliably on 

the Slovenian side, benefiting from structured and accessible data sources, the Italian segment of 

the corridor remains unsupported due to the unavailability of traffic data in compatible formats. As a 

result, the current implementation remains geographically constrained to the Slovenian territory. 

Efforts are ongoing to explore potential solutions to this limitation, including collaborations for 

improved data access or the design of proxy estimation models based on adjacent cross-border 

segments. Looking forward, future development efforts will focus on expanding the contextual 

awareness of the module by incorporating exogenous variables such as weather conditions, real-

time incident reports, and scheduled public events. The inclusion of such variables is expected to 

enhance the explanatory power of the models, enabling the system to distinguish between anomalies 

caused by external disruptions and those stemming from internal network dynamics. 
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In parallel, exploratory work has commenced on the development of a recovery time estimation 

framework, designed to infer the expected duration of abnormal traffic conditions based on historical 

anomaly patterns (but since it was optional and has not yielded final results it is not reported in this 

deliverable). By estimating section-specific recovery times, this feature could provide an added layer 

of decision support for operators, particularly in dynamic routing and resource allocation contexts. 

Finally, as the system matures and its predictive performance stabilizes, there is a clear trajectory 

toward extending its role beyond anomaly detection and into anomaly forecasting. Such a transition 

would mark a significant step forward, empowering stakeholders to implement proactive traffic 

management strategies grounded in reliable short-term predictions of network deviations. 

5.2 Anomaly detection in transport demand 

A proper characterisation of the demand mobility patterns enables the detection of anomalies, the 

identification of possible causes (such as weather conditions or especial events), and the 

assessment of their impact on the transport network. This analysis allows the classification of 

demand anomalies and the development of appropriate response plans. Moreover, as some of the 

factors (like weather conditions, or planned events such as football matches or demonstrations) are 

known in advance, certain anomalies can be anticipated and mitigated.  

The objective of this development is to develop a time series model capable of accurately capturing 

and forecasting mobility demand patterns. Additionally, the model should be able to detect anomalies 

in the demand. The expected demand can be used for the strategic planning of the transport network, 

while anomaly detection enables analysis and classification based on underlying causes and 

impacts, facilitating anticipation and more efficient decision-making. 

5.2.1 Data used 

The data used for this development are: 

• Origin-Destination (OD) matrices generated by Nommon. These matrices are generated 

from MND using the Nommon Mobility Insights solution. The matrices are segmented by trips’ 

characteristics (time of the day, purpose, and distance) and travellers’ characteristics (age, 

gender, residence place, and income). 

 

The datasets needed to generate the OD matrices are:  

• Activity and travel diaries generated from MND using Nommon proprietary algorithms.  

• Spanish census data, provided by the Spanish National Statistics Institute.  

• Land use information, provided by the Spanish National Geographic Information Centre.  

• Transport supply data, provided by the Statistics Institute of the Community of Madrid and 

the Madrid Regional Transport Consortium.  

• Travel surveys, provided by the Regional Transport Authority of Madrid.   

5.2.2 Methodology 

The algorithm developed consists in two main steps: 

1. Demand forecasting: a ML time series forecasting algorithm forecasts the expected 

demand for a day based on a multi-dimensional time series analysis over historical demand 

information.  

2. Anomaly detection: the expected demand obtained in the previous step is compared with 

the actual demand of the day to identify anomalies. For that, a two-step process is defined: 
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a. Validation of the expected demand based on the historical demand: to find potential 

anomalies, we must make sure that our reference demand values (i.e., the forecast 

demand) are accurate in the first place. For that, the expected demand is compared 

with the demand of the same day of the week of the previous weeks using a variation 

of Bollinger bands. Bollinger bands provide a criterion to define confidence intervals 

for the forecast demand. They consist of an n-period moving average, an upper 

bound (band) at k times an n-period standard deviation above the moving average, 

and a lower bound (band) at k times an n-period standard deviation below the moving 

average. Here, k, n are parameters that should be calibrated. This way, to validate, 

for instance, the forecast demand for a Tuesday, the average demand (denoted as 

avg) and standard deviation (denoted as std) of the previous n Tuesdays are 

computed to define the Bollinger band as the interval [avg - k std, avg + k std]. As 

sometimes the std is not enough to capture the demand variability, to make this 

interval more flexible to adapt to small changes or fluctuations in demand, we 

consider a variation of this formulation in the following way [(1- α) avg - k std, (1+ α) 

avg + k std]. If the forecast demand falls within this interval, it is considered a normal 

value. Otherwise, it is deemed abnormal, requiring further analysis to determine 

whether the value is valid, or it is due to poor predictive performance of the model, 

indicating the need for retraining or structural adjustments. 

b. Comparison of the actual and predicted demand: once the predicted demand is 

validated, it is compared with the actual demand. For that, a confidence interval of 

the prediction similar to the one of previous step is considered: [(1- α) prediction-ℓ std, 

(1+ α) prediction+ℓ std], where std is the standard deviation of the n previous days 

computed in the previous step, ℓ is a parameter that should be calibrated, and, for 

simplicity, α is the same value as in previous step. If the actual value falls within this 

interval, it is considered a normal value, otherwise, it is considered an anomaly, and 

a further analysis is needed. 

The workflow of the solution is depicted in Figure 65. 

 

Figure 65: Demand anomaly detection workflow 

This methodology allows the identification of anomalies in the demand, enabling their analysis in 

terms of calendar events (festivities, holidays, etc.), weather conditions, and planned events to look 

for possible explanations. 

5.2.3 Implementation and validation of the methodology 

To validate the methodology, it was applied to predict demand in the Madrid Region at the district 

level, covering a total of 185 districts (see Figure 66). The OD matrices were aggregated to consider 

the hourly originated trips per district, resulting in 185 hourly time series to be forecast 

simultaneously. 

The data used to test and compare the different approaches correspond to complete, standard 

weeks of 2024 (i.e., weeks without festivities or holidays, and outside holiday periods such as 

Christmas, Holy Week, or summer). The goal is to evaluate the performance of all approaches on 
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regular time series and to identify anomalies in more stable periods, as anomaly detection during 

holiday periods is more complex. 

Thus, the selected dates range from 16 January 2024 to 31 May 2024 and 16 September 2024 to 

30 November 2024, excluding the week of Holy Week (25 March 2024 to 31 March 2024) and the 

May bank holiday week in Madrid (29 April 2024 to 5 May 2024). 

Additionally, for each time step, the hour (from 0 to 23) and day of the week (from 0 to 6) were added 

in sine, cosine coordinates to the demand series. 

 

Figure 66: Division into districts of the Madrid region 

5.2.4 Implementation of the demand forecasting model 

Due to the high volume and dimensionality of the data, traditional time series forecasting models, 

such as Autoregressive Integrated Moving Average (ARIMA) and its variants, become impractical. 

These models struggle with long-term dependencies and high-dimensional feature spaces. 

Therefore, a deep learning-based approach is adopted to develop the forecasting algorithm. 

Four different architectures are considered: 

1. Long Short-Term Memory (LSTM) networks: LSTM networks are designed to handle long-

range dependencies in sequential data. This enables them to learn patterns over extended 

time horizons, making them well-suited for time series forecasting where past information 

influences future values. 

This model consists of 3 LSTM layers of 128 units and dropout of 0.3, followed by a dense 

layer of 1024 neurons and a final dense layer of 24*185 neurons (the size of the output: 24 

times steps and 185 zones). 

2. LSTM network with multi-head attention: Integrating multi-head attention allows the model to 

focus on the most relevant past time steps rather than treating all historical data equally. This 
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mechanism assigns different attention weights to different time steps, enabling the model to 

capture complex temporal dependencies more effectively. This enhances the learning 

process by allowing the model to attend to multiple aspects of the input data simultaneously, 

improving the interpretability and robustness of the predictions. 

This model keeps the structure of the previous LSTM model, but between the three LSTM 

layers and the two dense layers it includes multi-head attention layer (with 4 heads, 32 key 

dimensions, and 0.1 of dropout) and an average pooling layer.  

3. LSTM network combined with convolutional neural network (CNN): The addition of a CNN 

helps extract local and short-term patterns from the time series before passing the information 

to the LSTM layers. This also allows the extraction of the spatial information and 

dependencies in the demand matrices. CNNs excel at identifying spatial and hierarchical 

relationships in data, making them useful for capturing local features and trends. When 

combined with LSTMs, CNNs enhance the model's ability to learn both short-term variations 

and long-term dependencies, leading to improved forecasting accuracy.  

This model also keeps the structure of the initial LSTM model, but it adds on top a 

convolutional layer with 64 filters and kernel size of 5. 

4. LSTM networks with multi-head attention combined with convolutional networks: This hybrid 

architecture leverages the strengths of all the previous models, making it particularly effective 

for complex, high-dimensional time series data. 

The architecture of this model combines the previous three architectures: A convolutional 

layer, followed by three LSTM layers, a multi-head attention layer, and a global average 

pooling layer, finishing with two dense layers (all of them with the same parameters already 

described). 

The objective is to compare the four approaches to determine which one best fits the demand 

forecasting problem. To establish a benchmark, the LSTM network is used as the baseline model, 

allowing us to evaluate the impact of each additional component (multi-head attention and CNNs) 

on the model's performance. This comparison provides insights into how each architectural 

enhancement contributes to prediction accuracy and overall model effectiveness. 

The models are trained using the mean absolute error as the loss function and the optimization 

method Adam (adaptive moment estimation), which is a faster and more efficient extension of the 

stochastic gradient descent, providing adaptive learning rates for improved convergence. 

Following standard machine learning practices, the data is split into two datasets, each of which 

assists in a different task of the model implementation process: 

• Training set: this set is used to train the model. It includes all days up to 14 November 2024. 

• Test set: once the model is trained, this set is used to assess its predictive performance on 

new data (i.e., its ability to generalise). It consists of the last 16 days (15 November to 30 

November 2024) of the dataset. 

To generate the samples, a 9-days window was selected. This way, the model predicts the hourly 

demand of one day (i.e., 24 time steps) based on the observed hourly demand of the previous nine 

days. Thus, the predicted demand has size 185x24 (185 districts x 24 hours). To generate 

completely independent train a test sets, the samples were computed considering only the dates 

within each set. This way, no single day belongs to both the training and test set, allowing for a 

cleaner evaluation of predictive performance and generalisation ability. Considering the 9-days 

window restriction, the train set contains 4177 samples, and the test set contains 145 samples. 

Moreover, for the test set, as the nine first days are used to generate the first sample, only the last 

7 days of November are used to test the predictive performance of the model. 

The predictive performance of the model is assessed using the square root mean square error 

(RMSE) and the mean absolute percentage error (MAPE) metrics, defined as follows: 
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where n is the number of observations in the set, 𝑦𝑡 is the actual value of the series at time t, and 𝑦𝑡̂ 

is the model prediction at time t. 

The RMSE provides the mean predictive error at each predicted instant. While the MAPE provides 

the average percentage that the predictive errors suppose with respect to the real value at each 

predicted instant. It is important to note that, given the same predictive error in terms of RMSE, the 

MAPE value can vary significantly depending on the real value of the variable. For example, a 

prediction of 3 when the real value is 4 is not the same as a prediction of 49 when the real value is 

50. In both cases, the RMSE is 1, however, in the first case the MAPE is ¼= 0.25 and in the second, 

1/50=0.02. This means that the MAPE metric contextualizes the magnitude of the error, penalising 

more the predictive error of small values of the variable. Therefore, both metrics provide 

complementary information on the predictive error, giving both absolute and relative information with 

respect to the real value, and it is important to take both values into account when interpreting the 

results. 

5.2.5 Implementation of the anomaly detection algorithm 

The last step of the process involves the calibration of the parameters defining the confidence 

intervals for: i) the validation of the predicted demand, and ii) the identification of anomalies. 

For that, different values were considered, and the obtained results were contrasted with experts of 

Nommon’s team. The selected values were a 6-period moving average, a Bollinger bands of k,ℓ =2 

times the std and α=1 for the validation of the expected and actual demand. 

5.2.6 Results 

The results obtained are shown below. Table 13 shows the RMSE and MAPE values for the full 

week of the test set for each approach, and Figure 67 displays the RMSE and MAPE values for each 

day of the test set. 

Table 13: Predictive performance of each model on the test set 

Error LSTM 
LSTM with multi-head 

attention 
LSTM & 

CNN 
LSTM with multi-head attention 

& CNN 
RMSE 3205.66 4033.71 3423.13 3028.76 
MAPE 0.07 0.08 0.07 0.08 

As can be seen in the table and figure, the four models have a remarkable predictive performance, 

with MAPE values below 10% for every day in all the cases. This shows very good and stable 

predictions along the week. The LSTM with multi-head attention & CNN approach is the one with 

lowest RMSE. However, when contextualising this value with the MAPE, the one of this model is 

higher than that of the two approaches without multi-head attention. This is because the model better 

predicts higher demand volumes (more penalised by the RMSE error) but fails to forecast lower 

demand volumes (more penalised by the MAPE error).  
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Figure 67: RMSE and MAPE values for each day of the test set 

Next, the predictive capability of each model is compared for specific zones. Figure 67 illustrates this 

analysis with one district for the test set. As can be seen, the predictive performance of the models 

is very good for each day. It is interesting to note that the models without multi-head attention better 

fit the low demand curves of the first hours of the day, whereas their predictions are less accurate 

for the peak demand periods during the daily rush hours, failing to fit well to the three peaks. With 

the models with multi-head attention the situation is precisely the opposite, they fit the three peak 

demands accurately, but show worse predictive results for the low demand volumes during the first 

hours of the day. This same behaviour is observed in the rest of the zones and explains why the 

models with multi-head attention have better RMSE but worse MAPE (as already noticed). 

Next, we analyse the ability of each approach for anomaly detection. Table 14 presents the number 

of abnormal predictions of each model on a full week of the test set and the number of districts in 

which they are done. Percentages are shown in brackets. As we are analysing hourly predictions 

over a full week for 185 districts, the total number of predictions is 24×7×185=31080. 

Table 14: Abnormal predictions for each model 

  LSTM 
LSTM with multi-

head attention 
LSTM & 

CNN 
LSTM with multi-head 

attention & CNN 

Abnormal predictions 
733 

(0.02) 
1304 (0.04) 

455 
(0.01) 

1252 (0.04) 

Districts with abnormal 
predictions 

146 
(0.79) 

184 (0.99) 
138 

(0.75) 
172 (0.93) 

Once the algorithm detects abnormal values, these should be further analysed by a technical expert 

to determine whether they are actual abnormal demand situations, or on the contrary, they are valid 

values. In this case, all the identified anomalies correspond to valid values. They are detected as 

anomalies since their confident interval is too narrow. This is due to a very small variabili ty in the 

previous days (translated in a very small std value, which determined the width of the interval). A 

simple visual inspection of the data reveals that those values are pretty close to their confident 

interval, confirming that they are valid predictions (this is illustrated with an example next). The 
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values of the confident analysis can be tuned to make them wider or narrower, by multiplying by a 

given factor, according with the specific needs of the final users. 

Table 15 presents the number of anomalies detected by each model, and the number of districts 

with anomalies. As in previous case, percentages are shown in brackets. 

Table 15: Anomalies identified with each model 

  LSTM 
LSTM with multi-head 

attention 
LSTM & 

CNN 
LSTM with multi-head 

attention & CNN 

Anomalies 
844 

(0.03) 
956 (0.03) 344 (0.01) 660 (0.02) 

Districts with 
anomalies 

167 
(0.90) 

182 (0.98) 137 (0.74) 160 (0.86) 
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Figure 68: Predictive comparison of the four models for one district 

As can be seen, very few abnormal predictions and anomalies are identified (less than 5% and 4%, 

respectively). This is due to two facts: 1) the regularity of the times series and 2) the good predictive 

performance of the models. None of the anomalies detected correspond to real anomalies but just 

like before, their confident interval is too narrow due to a very small variability in the previous days, 

making abnormal small fluctuations in the demand. A simple visual inspection of the data reveals 
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that those values are similar to the ones detected in the previous step and are very close to their 

confident interval as well (this is also illustrated with an example next). 

The model yielding the best anomaly detection results is the LSTM & CNN model. Despite this model 

achieves very similar accuracy results to the LSTM model (Table 13), its anomaly detection capability 

is far better, presenting much fewer mislabelled abnormal values (Table 14) and less than a half of 

mislabelled anomalies (Table 15). This makes sense, as this model combines the capability of 

LSTMs for long-term pattern analysis with that of CNNs for short-term and spatial pattern analysis, 

making it more robust. On the contrary, the models with multi-head attention presents more 

mislabelled abnormal values and anomalies. This may be due to the same reason that caused their 

MAPE error to be greater: their predictive error is bigger for smaller demand values, for which the 

confident interval is narrower.  

To illustrate the results with a concrete example, Figure 69 displays the abnormal predictions of each 

model for the same district as before and Figure 70 shows the anomalies identified with each model. 

As can be easily seen in the graphs, none of these values are anomalies. Indeed, they are very close 

to the confident interval. As these values are identified for further analysis, a simple data visualisation 

is enough to conclude that all the values are normal, yielding a complete validation of both the 

predicted and the observed demand of the week for the district. 
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Figure 69: Abnormal predictions for one district 
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Figure 70: Anomalies identified for one district 
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6. CONCLUSIONS 

Deliverable D3.4 concludes the technical work carried out within Work Package 3 (WP3) of the 

CONDUCTOR project, bringing together the final implementations of the key modules related to 

data harmonisation, fusion, dynamic optimisation, anomaly detection, and network load balancing. 

These components have been progressively developed and refined through previous iterations 

(D3.1, D3.2, and D3.3), and their final versions—presented herein—reflect the results of extensive 

simulation activities, technical validation, and feedback integration from cross-WP collaboration, 

particularly with WP5. Across all tasks, progress beyond the state of the art has been achieved, 

with the main innovations being summarised below. 

Data Harmonisation was used to adopt a standard information model for schemas and semantics 

for data used by CONDUCTOR applications. Within CONDUCTOR, we developed various 

components, tools, and algorithms to support the investigation of CCAM services. Our harmonised 

representation of data models allowed the seamless integration of applications from different 

partners into CONDUCTOR’s platform. 

The CONDUCTOR dataspace ensures that no single entity controls all data, allowing each 

stakeholder to manage their own data sharing. It includes decentralised and centralised 

components, such as an Identity Service and a Catalogue Service, connected to the Orion 

Message Broker. The key components selected for its realisation ensure interoperability and 

security and encompass a data exchange process involving contract offering and negotiation, 

including defining asset data, creating assets and policies, configuring contracts, querying offers, 

and performing data transfers. CKAN enables API access, datastore, metadata management, 

search functionality, visualisation tools, and federation capabilities. Finally, the deployment of the 

dataspace adopts a containerised big data architecture for flexibility and efficient resource 

management. 

CONDUCTOR developed several data fusion approaches for harmonising and fusing data from 

various sources. These involved algorithms and models for: 

• Characterisation of last-mile delivery trips and estimation of last-mile delivery 

demand from mobile network, surveys, and logistic operation data. This methodology 

allows the characterisation of last-mile delivery trips and flows. Detailed mobility pattern 

information is obtained, enabling the informed definition of delivery routes needed for the 

urban logistics UC of the project. As a final step, this methodology is being applied to 

identify logistic MND users. To do so, the trip features defined in step 5 are computed for 

each MND user, and the clustering model obtained in step 6 is used to assign them to a 

pattern. Specifically, the probability of a user belonging to each cluster is calculated by 

applying the softmax function to their distances to the cluster centroids (these probabilities 

add up to 1). Users with a probability above a given threshold for a specific cluster are 

assigned to that cluster. Those who do not meet the threshold for any cluster are labelled 

as non-logistics. Finally, the methodology defined can be applied to the flow 

characterisation of many kinds of users (e.g., taxi drivers), as long as a sample of ground 

truth data for such types of users is available. 

• Shared mobility demand estimation. The shared mobility demand estimation 

methodology effectively combines real-world shared mobility data with behavioural and 

mobility pattern information from surveys and mobile network data. The resulting CCAM-

DRT demand estimates are both spatially and temporally realistic, and the mode 

substitution model provides valuable insights into the expected impact of CCAM services 

on the existing transport system. This enables more informed scenario planning and 
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decision-making in urban mobility contexts, particularly in the application areas of UC1-

Madrid and UC3. 

• Enrichment of users’ profile. The results obtained for each cluster are very positive, 

showing the effectivity of the methodology for the characterisation of car ownership in a 

region. This corroborate the initial hypothesis that the car ownership of a user can be 

characterised in terms of their sociodemographic and economic profile and mobility 

patterns, combined with the sociodemographic features and mobility patterns of the 

population that resides in the same zone and the availability of public transport services in 

the residence’s zone. A proof of that is the generalisation capability of the models, showing 

impressive predictive accuracy on the zones not considered for training (i.e., zones never 

seen before). 

• Household size assignment. This methodology estimates the household size of MND 

users based on survey data, using sociodemographic features and place of residence to 

probabilistically assign household sizes. Data from various sources (e.g., census data, 

household surveys, mobile network data, etc.) have been utilised to realise the model. An 

iterative algorithm assigns household sizes in two main steps: (a) Unipersonal Households, 

which involves (i) the calculation of the number of unipersonal households per census tract 

and (ii). The assignment of users to unipersonal households based on age group 

distribution; (b) Multi-person Households, which (i) assigns the remaining users to multi-

person households using age group distribution, (ii) updates household size distribution to 

match census tract averages, and (iii) repeat until the average household size matches the 

census tract data. The developed methodology was tested in the Madrid region and 

showed a high accuracy with an R² score of 0.89, indicating effective household size 

estimation. 

• Identification of unusual traffic patterns caused by large-scale events. This involves 

an AI-powered decision support tool that enhances situational awareness and assists with 

mobility planning. The system comprises two main components: a fuzzy inference engine and a 

multi-criteria decision analysis. The former uses fuzzy logic to classify traffic conditions 

based on vehicle density, traffic speed, and the gap between vehicles, and by utilising 27 

fuzzy logic rules to interpret traffic conditions, it outputs a traffic condition score (0-100), 

categorised as free-flowing, moderate, or congested. The latter applies the TOPSIS 

methodology to prioritise traffic events and recommend optimal routes. It constructs a 

weighted decision matrix, normalises data, and calculates closeness coefficients to rank 

alternatives. This is used to evaluate routes based on criteria like travel time, emissions, 

distance, and number of traffic events. The developed tool helps decision-makers identify 

the most optimal routes by providing a comprehensive analysis of traffic conditions and 

route performance. 

• Coupled Aimsun-FleetPy Simulation Data. This suite of techniques enables the 

integration of urban logistics into DRT services, and can be simulated in Madrid using data 

from Nommon. FleetPy, a Python-based DRT simulation tool, is coupled with Aimsun Next 

to account for realistic traffic conditions. Initially planned for microscopic simulation, the 

project shifted to using a macroscopic model of Madrid. Data inputs include a calibrated 

macroscopic model, origin-destination pairs for DRT and freight requests, and FleetPy 

simulation parameters. Freight requests are clustered for same-day delivery, ensuring DRT 

passenger service quality is maintained. Traffic state data from Aimsun Next is used to plan 

routes and assign vehicles, with travel times calculated using the Dijkstra algorithm. 

• Space-time context and heterogeneous data fusion. This methodology adopted a 

context graph as a framework for data fusion that provides semantic descriptions of entities 
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and encodes their spatiotemporal and hierarchical context. It links data points to structured 

context layers, enabling advanced reasoning and feature extraction across diverse data 

sources. Contexts and entities are stored explicitly in the graph, with measurements 

encoded as properties on the edges. Contexts are structured hierarchically, with spatial and 

temporal relationships represented by specific types of edges. Two context encoding 

methods were compared: explicit and implicit. Explicit context encoding, where space and 

time are represented jointly, proved more effective for retrieval and aggregation due to 

better indexing options. Implicit encoding, which separates spatial and temporal contexts, 

caused issues with query processing and was less efficient. The context graph architecture 

was used to create an API for accessing Slovenian traffic data, primarily for Traffic Events 

Assessment Services in UC2. However, graph databases face limitations as primary stores 

for time series measurements, including performance bottlenecks and inefficiencies in 

querying time series data. Therefore, a columnar database is recommended for storing time 

series measurements, while graph databases are better suited for storing rich semantic 

data for traffic management and forecasting. 

The development of models for network balancing, dynamic optimisation, and anomaly detection 

for transport-related applications was a core objective of WP3. In the network balancing domain, 

various solutions were developed. A  traffic management solution for signal vehicle couple 

control implemented a decentralised control scheme, which demonstrated enhancements in the 

transport network's throughput while improving the system’s resilience against unforeseen 

incidents and disruptions. The model-based optimisation efficiently encapsulates the optimal route 

distribution task and dynamic route choice function based on the current state of the network, 

making efficient rerouting possible for better network load balancing. In this research direction, we 

have tested the centralised CAV routing and signal optimisation. Decentralised incident 

management using CAV routing has been successfully tested along the main route and signal 

optimisation process. A social routing with multimodal perspective was developed as a 

mechanism that persuades travellers to choose routes for the benefit of the system. In the 

multimodal setting of D3.2, the social rerouting framework is applied and tested in the public 

transport network of Twente, illustrating that 25% of the maximum improvement in efficiency can 

be obtained with 20% of travellers willing to act socially.  We considered a stochastic extension of 

this model, assuming the portion of travellers willing to act socially is random following an 

exogenous empirical discrete distribution. This leads to additional challenges since travel times 

depend on route flows, and thus also become random. Consequently, travel advice should be 

adopted accordingly, illustrated to provide opportunities to reach policy objectives, e.g. since longer 

routes may be accepted as long as one is compensated by suggesting faster or even individually 

optimal routes in other cases. Prediction models for demand-responsive transport were 

developed by testing various model architectures and finding that a single holistic model, which 

takes route information and other features to predict for the entire year, worked best. This 

approach reduces computational resources, minimises overfitting, and allows knowledge transfer 

between different cases. The model architecture includes embedding layers for time and route 

information, convolutional layers for current orders, and dense layers with dropout. It outputs five 

quantiles for passenger numbers, the probability of at least one passenger, and the current 

passenger count. These additional outputs improve training efficiency and accuracy. Training uses 

mean absolute error for current counts, binary cross-entropy for classification, and pinball loss for 

quantiles. Metrics like mean absolute error (MAE) and mean absolute percentage error (MAPE) 

assess model accuracy. The model outperforms a baseline model, especially for short-term 

forecasting, with finer time resolution being more suitable for short-term and coarser for long-term 

forecasting.  
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Optimisation techniques based on metaheuristics were designed for the realisation of an urban 

freight distribution with the DRT service for last-mile delivery. The solution is flexible, handling 

various vehicle types, capacities, access restrictions, time windows, and the integration of people 

and parcels. Due to large input data sizes, a pre-optimiser was implemented to cluster tasks, 

making them manageable for the optimiser. This pre-optimiser processes and cleans the data, 

divides it into smaller groups, and consolidates outputs into a single result. Strategic meeting 

points were defined to improve DRT efficiency, balancing user convenience and operational 

efficiency. A clustering model was designed considering distance, direction, and time properties of 

trajectories. Two methods for assigning initial delivery time windows using spatio-temporal aspects 

were investigated. The first method, Region-Based Equal Delivery Time Windows, counts the 

number of freight requests within each region and assigns them 2-hour time windows during 

working hours, ensuring an equal number of deliveries per time window. The second method, DRT 

Demand-Based Delivery Time Windows, considers the forecast of DRT passengers. It counts the 

number of DRT passengers for each region and 2-hour time window during working hours. Freight 

requests are then assigned 2-hour time windows proportional to DRT demand, increasing the 

likelihood of meeting delivery windows due to vehicle availability in those regions. Optimisation 

models were also used for tackling the problem of adaptive routing based on minimising the 

risk to provide a more accurate description of passenger behaviour in a PT network. The 

two main difficulties we take into account for approaching this problem are (i) modelling adaptive 

route choice in a stochastic time-dependent PT system, and (ii) defining risk and the choice of a 

suitable risk measure. The work involved the definition of a stochastic time-dependent network and 

routing policies as an adaptive extension for deterministic path choice. The model is kept very 

general, which allows it to be applied to a variety of different settings. But due to the generality, it is 

less intuitive and applicable for concrete examples. As the second goal was however to analyse 

risk measures, the generality of the model allows it to take a broad view at them, define risk in a 

general manner and study the properties and suitability of different examples without restricting 

ourselves to a specific setting. Furthermore, a solution was developed for the optimisation of 

demand-responsive transport. This component enables accurate forecasting of vehicle 

requirements by combining demand predictions with insights from historical reservation data. By 

simulating realistic future reservation scenarios and optimising routes across multiple samples, the 

system identifies patterns in fleet usage and variability, allowing for precise estimation of the 

number and type of vehicles needed across different routes and periods. These insights form a 

critical foundation for future applications such as dynamic pricing, where prices can be adjusted 

based on predicted demand and fleet availability to balance load, optimise resource utilisation, and 

maximise revenue. Beyond dynamic pricing, other use cases include: (i) workforce planning, 

namely helping in the allocation of drivers and supporting the staff more efficiently; (ii) operational 

scheduling, allowing for better shift management, vehicle maintenance planning, and reduction of 

idle times and (iii) strategic decision-making, such as fleet expansion, service area adjustments, or 

introduction of new vehicle types based on long-term demand patterns. Ultimately, this approach 

boosts operational efficiency and provides a data-driven foundation for scalable and customer-

responsive transport services. 

In the domain of anomaly detection, models for detecting anomalies in traffic patterns and transport 

demand were developed. Anomaly detection in traffic patterns aims to identify irregularities in 

traffic behaviour, offering timely insights into deviations from expected operational norms. The 

Anomaly Detection component is designed for efficiency and integration within the CONDUCTOR 

framework, tailored for the Slovenian pilot. The system periodically analyses current traffic data, 

flags anomalies, and sends notifications to enhance traffic management. The developed solution 

encompasses an ensemble framework that integrates the outputs of multiple heterogeneous base 

models (one-class support vector machines, isolation forest, local outlier factor, and long short-

term memory neural networks) through both majority voting and weighted averaging schemes. 
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These combination strategies were selected for their capacity to improve detection consistency 

while reducing the sensitivity to noise, model-specific errors, and overfitting tendencies. Results 

demonstrated accuracy of up to 88% detecting reduced-speed anomalies during off-peak hours, a 

scenario often difficult to capture due to limited variation in input signals. Conversely, anomaly 

detection in transport demand aimed to develop a time series model capable of accurately 

capturing and forecasting mobility demand patterns and detecting anomalies in the demand. The 

algorithm developed consists in two steps including a ML time series forecasting algorithm that 

forecasts the expected demand for a day based on a multi-dimensional time series analysis over 

historical demand information and an anomaly detection algorithm that compares the expected 

demand (obtained in the previous step) with the actual demand of the day to identify anomalies. 

Four approaches were tested for their suitability in realising the forecasting algorithm, including 

techniques such as long short-term memory and convolutional neural networks. Following 

experimentations, it was determined that the developed models have an excellent predictive 

performance, with MAPE values below 10% for every day in all the cases. The LSTM with multi-

head attention & CNN model is the one with the lowest RMSE, while the LSTM model is the one 

with best MAPE. The models with multi-head attention display better behaviour for the peak 

demands but show worse predictive performance for the hours with lower demand volumes. The 

models without multi-head attention exhibit the opposite behaviour. Regarding the anomaly 

detection, the models output very few abnormal predictions (less than 5%) and detect even less 

anomalies (less than 4%), because of the regularity of the series and their good prediction 

performance. The best performing model is the LSTM & CNN model, with an average of less than 

70 abnormal predictions per day, and less than 50 anomalies detected per day (for the complete 

Madrid Region). Each of these anomalies must be analysed by an expert to determine whether it 

truly represents an anomaly. This volume is entirely reasonable and allows for an individual 

analysis by an expert. These results confirm the effectiveness and the practical feasibility of the 

methodology for anomaly detection. 
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ABBREVIATIONS AND DEFINITIONS 

Term Definition 

ADAM Adaptive Moment Estimation 

API Application Programming Interface 

ARIMA Autoregressive Integrated Moving Average 

ASGI Asynchronous Server Gateway Interface 

AUC Area Under the Curve 

CAV Connected And Automated Vehicle 

CCAM Connected, Cooperative and Automated Mobility 

CDR Call Detail Record 

CKAN Comprehensive Knowledge Archive Network 

CNN Convolution Neural Network 

CRON Command Run On Notice 

CRTM Madrid Regional Transport Consortium 

CRTM Madrid Regional Transport Consortium 

DRT Demand-Responsive Transport 

DTA Dynamic Traffic Assignment 

EDA Exploratory Data Analysis 

EDSC Eclipse Data Space Components 

EMD  Mobility Household Survey (acronym in Spanish) 

ETA Estimated Time of Arrival 

GPS Global Positioning System 

IDSA International Data Spaces Association  

INE Spanish National Statistical Office (acronym in Spanish) 
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JAX Just Another XLA 

JSON JavaScript Object Notation 

KPI Key Performance Indicator 

LNS Large Neighbourhood Search  

LOF Local Outlier Factor 

LSTM Long Short-Term Memory  

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

ML Machine Learning 

MND Mobile Network Data 

OD Origin Destination 

ORP Optimal Routing Problem 

OSRM Open-Source Routing Machine 

PCA Principal Component Analysis  

POI Point of interest 

PT Public Transport 

RFE Recursive Feature Elimination 

RMSE Root Mean Square Error 

ROC Receiver Operating Characteristic  

SDVRP Stochastic and Dynamic Vehicle Routing Problem 

STD Stochastic Time-Dependent 

SVCC Signal-Vehicle Cooperative Control 

SVM Support Vector Machines 

TMC Traffic Management Centres 
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TOPSIS  Technique for Order Preference by Similarity to Ideal Solution 

UC Use Case 

XLA Accelerated Linear Algebra 
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